
Server-Side Web
Archiving

Version 1.0 | April 2021

Eoin O’Donohoe (Netherlands Institute for Sound and Vision)

Server-Side Web Archiving

Contents

1. Introduction 3
1.1 Background 3
1.2 Server-Side 4
1.3 The Dynamic Web 4
1.4 Past Research 4
1.5 Methodology 4
1.6 Goal 5
1.7 Scope 5

2. Tools 6
2.1 Conifer 6
2.2 Reprozip 6

3. Use Cases 7
3.1 Last Hijack 7
3.2 Collapsus 12

4. Application of Tools 16

5. Results 22

6. Recommendations and Conclusions 24

7. Glossary 26

Credits 30

2

Server-Side Web Archiving

1. Introduction

This report explores the area of server-side web preservation in an archival context by
examining the significant properties of the dynamic web, providing an overview of the tools
currently available for capturing such projects, and offering some examples and use cases that
can display where server-side archiving can be employed as a strategy for heritage institutions.

1.1 Background
The NDE Software Archiving project, conducted during the “intensiveringsperiode” 2019–2020,
brings together research, best practices, and guidelines for Dutch heritage institutions looking to
start with or intensify software preservation. Alongside traditional software packages, this
research also aims to encompass web technologies and web based applications that don’t
neatly fit into regular web crawling workflows. Dynamic web content and interactive experiences
online are ever increasing and the processes involved are essential for the successful
preservation of such projects. There are several initiatives in place that focus on capturing and
safeguarding the web, whether by creating snapshots of specific websites at particular times or
through the recording of individual, subjective walkthroughs of a user’s website interactions. Yet
there is further scope for institutions to identify, document and preserve the collective assets
that combine to make up such projects. The Internet Archive’s Wayback Machine and Rhizome’s
Conifer (previously WebRecorder) offer invaluable tools for the capture of and access to
client-side content but even those don’t always succeed in capturing a fully functioning
interactive website. Through focusing efforts on preservering the server-side files, rather than
crawling the client-side representation of a website, some of the pitfalls of crawling tools can be
avoided by offering a more holistic method. Acquiring and preserving server-side data for
complex websites is not a straightforward task due to a reliance on project makers and website
hosters to provide access to files and the diverse nature of the websites in question. However,
and what to do with such data in order to make it more accessible is still being investigated.
This report will answer some of these questions and offer recommendations on getting started
with preservation of dynamic web content. This will hopefully be beneficial for institutions and
individuals looking to make the first steps in this area.

1.2 Server-side
Many websites depend on server-side operations to retrieve, manipulate and store data that is
requested or provided by the user on the client side. Server-side content can include all kinds of
assets such as scripts, media, databases that are managed by the website creators. Many of
the operations performed on the server end would be too slow and insecure to achieve on the
client-side. Transaction-based and server-side approaches require active collaboration with the
server owners and need to be implemented on a case-by-case basis.1

1 https://nationalarchives.gov.uk/documents/information-management/web-archiving-guidance.pdf pg. 5

3

https://nationalarchives.gov.uk/documents/information-management/web-archiving-guidance.pdf

Server-Side Web Archiving

Client side and server side communication

1.3 The Dynamic Web
Websites can be divided into two types; static websites and dynamic websites. Static websites
offer all users the same content and same experience by displaying information using HTML
and CSS. Dynamic websites on the other hand, involve a dialogue between the user, via their
browser, and the website server, where data is stored. This transactionary nature creates a
unique experience for each user through deferred representations, whereby client-side
technologies such as JavaScript are used to change the client-side state of a representation
after it has been initially loaded.2 Dynamic websites can be difficult for a traditional web crawler
to capture due to the scripts and databases which are encapsulated on the server-side. The
option to recreate the original environment of the website would ensure the preservation of the
performative nature of such projects.

1.4 Past Research
Previous research into this topic has been conducted by Sound and Vision colleague Rasa
Bocyte in their 2018 paper Server-side Preservation of Dynamic Websites3. A lot of groundwork
has been laid out here in terms of the needs of server-side preservation as well as the tools that
can be used to achieve them. By testing these tools in practice on a few use cases, and
providing more information on how to deploy these tools this report brings server side archiving
to a new audience.
Work on the Reprozip Web tool, as a prototype, has been been presented at iPres 20194. In this
research we looked at the degree to which this tool is now ready for use in archival practice.

1.5 Methodology
The goal of this study is to provide knowledge and recommendations on the steps required for
Dutch heritage institutions as they set out to collect and preserve complex websites, such as
interactive documentaries. Specifically, it focuses on the available use cases from the

4 Boss et al (2019), Saving Data Journalism Using ReproZip-Web to Capture Dynamic Websites for Future Reuse, iPres 2019.
https://ipres2019.org/static/proceedings/iPRES2019.pdf

3 Bocyte, R. (2018). Server-side Preservation of Dynamic Websites. Netherlands Institute for Sound and
Vision.https://publications.beeldengeluid.nl/pub/633

2 Brunelle et al (2015). Archiving Deferred Representations Using a Two-Tiered Crawling Approach, iPres 2015.
https://arxiv.org/pdf/1508.02315.pdf pg 1

4

https://ipres2019.org/static/proceedings/iPRES2019.pdf
https://publications.beeldengeluid.nl/pub/633
https://arxiv.org/pdf/1508.02315.pdf

Server-Side Web Archiving

Submarine studio and aims to distill some best practices for getting started. The overview of
available tools should present some options for what can be done with acquired projects.

1.6 Goal
For the purpose of this report, digital preservation analyst Eoin O’Donohoe of the Netherlands
Institute for Sound and Vision (Sound and Vision) carried out the research, installation, testing,
and evaluation of several tools for the preservation of dynamic websites. Focussing on
particular examples, provided by Amsterdam based production studio Submarine, this research
identifies commonalities between significant properties, suitability of available tools, and
necessary collaboration for the successful preservation of such projects. The work explores the
current state of the web based productions in the Netherlands and the most feasible methods
available for their preservation. The process consisted of:

1. Familiarisation with tools and technologies available for the long-term preservation of web
based projects.

2. Research into the individual case studies from Submarine including technologies used,
identification of server files, local redeployment of websites, troubleshooting with website
creators.

3. Installing/deploying the dynamic website (case study) on a local machine. Then packaging
with reprozip-web and re-installing it from the reprozip package.

4. Testing of Reprozip tool and analysis of where it fails and where it succeeds in capturing
the use-cases.

1.7 Scope
The scope of this report is to investigate the specific tooling for capturing dynamic websites,
with the main focus being on a server-side approach. The examination of these tools can be
seen as a use case in its own right and will serve to highlight the potential barriers when it
comes to planning for the preservation of such assets. Outside the scope of this report is the
establishment of a concrete procedure for capturing all dynamic websites, as each example will
likely present it’s own unique issues and challenges.

5

Server-Side Web Archiving

2. Tools

For the purposes of this report, a variety of tools were investigated for their suitability. Two of
the more notable options that we wanted to use for capturing and packaging our use cases
were Conifer and a reproducibility tool called Reprozip.

Tools used as part of testing

2.1 Conifer
By its own description, Conifer (previously known as WebRecorder) offers the possibility of
creating high fidelity, interactive captures of the web from the perspective of a specific user,
while also offering a platform where these captures can be made accessible and played back.
Developed by Rhizome, the tool allows users to capture complex client-side interactions such as
embedded media, 3D graphics and fancy navigation and save them as a collection. Using a
dedicated UI, users can load up the URL of a website and begin the capture process, simply
navigating through the experience. This is highly subjective and thorough interrogation of each
site is necessary to achieve a true picture. Nevertheless, the ease of use and generally high
quality of the captures produced make Conifer a valuable alternative to automated crawling
tools.

2.2 Reprozip
Reprozip is a reproducibility tool used to collect all necessary data, scripts, libraries and
environment variables and package them into one self-contained bundle. The idea is that these
bundles can then be redeployed on different machines and different environments but still work
as originally intended. Reprozip has been used to capture complex scientific data and processes
as scripts are run but also allows for the capture of client-server applications (including
databases). By running a web application locally from the command line it should be possible to
trace the processes that are happening and automatically identify which files should be included
in the final package. Having access to server files for a particular project and knowledge of its
deployment is an important first step for using this tool.

6

Server-Side Web Archiving

3. Use Cases

For our two use cases we contacted Amsterdam based production studio Submarine, who have
previously worked with Sound and Vision. The company is known for creating award winning
features, animations, documentaries and digital content. Most notably they have produced
several interactive and transmedia experiences for the web. Each project makes use of various
web technologies to tell a story, and it is down to each user to navigate their own way through
the information presented. In this study we decided to look at two specific example; Last Hijack
and Collapsus

3.1 Last Hijack
Last Hijack is an interactive documentary that tells the story of piracy in Somalia. Through
recorded interviews, animations, and data-visualisations the user can navigate through a
timeline of events with new information and resources becoming available at different points.

Last Hijack by Submarine

Initial Appraisal
Last Hijack is primarily written in PHP5 and features an interactive timeline with various content
attached at various points. These take the form of embedded videos, text pop ups,
data-visualisations and interactive maps all of which make extensive use of JavaScript in order
to render. Further investigation into the folders of the server files show use of JQuery6. The total
project folder received from Submarine consists of over five thousand files, separated into
various folders. Many of these files are interconnected scripts and from the perspective of a non

6 JQuery is a JavaScript library used to simplify a variety of scripting operations including event handling, animation and HTML
manipulation.

5 PHP is a general-purpose scripting language especially suited to web development, usually processed on the server side.

7

Server-Side Web Archiving

professional developer it is difficult to understand what is going on so it is beneficial to have
someone knowledgeable in this area on hand to assist.

Screenshot of project files

Deployment
In order to see if the website would render correctly it was necessary to deploy the files on a
server. As the project was written in PHP primarily it was decided to make use of the PHP
built-in server which is generally used for local testing of web applications in development. I
used an Ubuntu machine running version 18.04.4. Firstly, PHP was installed via the command
line.

beng@beng:~$ sudo apt install php7.2-cli

Example command line installation of PHP

8

Server-Side Web Archiving

Example command line installation of PHP

This ensured that the built-in server was available for use. The following step was to identify
where the access point to the website was. This is generally the index.html file or something
similar. With many variations of this naming convention, across multiple different file
extensions, it was a bit of trial and error to find the correct starting point but once identified the
following command was run via the command line:

Example command line deployment of project

This deployed the website on my machine’s local host, port 8000, where I could access it via a
web browser. At first glance everything appeared to render correctly, with videos and text
appearing correctly in the browsers. Navigation back and forth through the different options
wasn’t a problem but when it came to some of the data-visualisation elements it was clear that
there was a missing link somewhere. For the most part the folder structure of the project was
clear and labelled and “Data Visualisations” was its own folder. On further inspection, and after
reviewing the error messages in the console it became clear that the scripts were calling from a
slightly different path. Whether this was a result of a mix up when the server files were

9

Server-Side Web Archiving

transferred, or a complication between relative and absolute path conventions7, is unsure but by
tracing the folder location that was actually being called and moving the data visualisation files
there the issue was partly resolved.

Data visualisation overlay with missing resources beside live version

Terminal displaying error message 404 where resources were missing

The remaining issue related to the website’s use of an external map resource, which is meant to
be incorporated into some of the data visualisations. When comparing the local deployment and
the live version it became evident that both were experiencing the same issue.

7 A file is identified by its path through the file system, beginning from the root node. A path is either relative or absolute. An
absolute path always contains the root element and the complete directory list required to locate the file whereas a relative path
might just contain subdirectory information.

10

Server-Side Web Archiving

Maps not displaying on certain pages (This is also an issue with the live version)

When the console was consulted it displayed that the website was attempting to access a
Mapbox8 resource which is responsible for importing the live map for use with the data
visualisations. Discussing the issue with developers from Submarine it was mentioned that a
possible cause for this problem was an outdated subscription to Mapbox. As this affects the
live version it was taken as a priority to fix by the developers but it does further highlight the
preservation issue of depending on external resources.

Console pointing to Mapbox issues

8 Mapbox is a developer’s subscription platform that provides custom live maps for applications. https://www.mapbox.com/

11

https://www.mapbox.com/

Server-Side Web Archiving

3.2 Collapsus
Collapsus is a transmedia storytelling experience that deals with issues surrounding global
energy politics. It makes use of documentary footage, mini games and movie clips to put users
in control of the unfolding story.

Collapsus by Submarine

Initial Appraisal
Collapsus, like The Last Hijack, is written in PHP but also includes an underlying SQL database
and a collection of flash video that feeds the application. Once again, the interconnecting files
sprawl across many folders with little in the way of documentation or instruction for
deployment.

12

Server-Side Web Archiving

Folder structure of Collapsus source files

Deployment
Having located the “index.php” file in the “/www” folder this seemed like the natural option to
point the built in PHP server towards. In a similar method to The Last Hijack example I navigated
to the appropriate folder and launched the server on port 8000 using the same command as
before in the terminal:

beng@beng:~/Desktop/collapsus/httpdocs/app/www$ php -S localhost:8000

With the server started I opened the browser to localhost:8000 but was presented with “HTTP
Error 500” with the page failing to load. Returning to the terminal the error message displayed an
issue with a mysql_connect() function in the “init.php” file.

Error message when trying to connect to Collapsus underlying database

13

Server-Side Web Archiving

When raised with the developers at Submarine it was determined that this was as a result of an
outdated MySQL driver. A relatively quick fix, which resulted in an updated “init.php” file, this
again highlights the potential for legacy issues affecting the long term sustainability of web
applications. After replacing the “init.php file and relaunching the server some progress was
evident but the next issue presented itself.

HTTP Error 500 before “init.php” fix

Prompt to enable Flash after “init.php” fix

This issue is probably the most difficult to deal with for any web application that relies on Flash
post 2020 as the much publicised discontinuation of Flash support makes browser access to
such sites impossible. This problem was discussed with the developers and the possibility of
sourcing an old Flash plugin was suggested. This in turn would require an older version of a
browser that is compatible with Flash. Due to time constraints, and the added layer of
complexity, this approach was not tested in this study but work has been conducted in a

14

Server-Side Web Archiving

separate report on the topic of browser emulation9 which could aid in the development of an
appropriate browser environment to run Flash reliant websites. As a final attempt to access the
content I added the Flash Player for Web (update 2021) extension to chrome. This player aims
to extend the use of some Flash content after 2020 by making use of the Ruffle Flash emulator10

to access content.

Ruffle warning when trying to access Collapsus Flash content

Home page rendered using Ruffle extension but lacks functionality when clicking on Enter

10 Ruffle is a Flash Player emulator written in Rust that runs natively on all modern operating systems as a standalone application, and on
all modern browsers. https://ruffle.rs/#

9 Claudia Roeck. (2021, January 28). Web browser characterisation, emulation, and preservation (Version 1.0). Zenodo.
http://doi.org/10.5281/zenodo.4476030

15

https://ruffle.rs/#

Server-Side Web Archiving

4. Application of Tools

This section will describe the experiences experimenting and interacting with two specific tools:
Conifer (previously Webrecorder) and Reprozip.

Conifer
The Conifer web application is straightforward and intuitive offering the user the possibility to
create an account where website captures can be saved in collections. For the purpose of this
test I tried capturing Last Hijack, which relies heavily on user interaction to expose all possible
content available. The below interface shows the starting point for capturing a Conifer
recording. The user simply needs to include the target URL and click “Start Capture”.

Conifer capture page

This will launch the target website in the current window with the Conifer interface overlay
visible. From here it is down to the user to navigate through the website and interact with the
features. When finished, the user stops the capture and is presented with a WARC file that can
be opened within the same Conifer interface and interacted with independently of the live
website. In my first pass of the website I was interested in what information was and wasn’t
captured. While interacting with the site I purposely skipped sections or failed to click on links to
see how this would affect the capture. As expected, these features did not display on playback,
in some instances just appearing as blank boxes within the window and in others providing a
“resource not found” message.

16

Server-Side Web Archiving

A page that was purposely skipped when capturing in Conifer

In a second pass, these same elements were interacted with and subsequently included in the
final capture, allowing for playback. The overall quality of the capture was very high, only
displaying minimal lag in loading some elements of the page. However, the reality of having to
manually interact with each individual feature of the website does make the process of
capturing rather time consuming. As this tool is likely to be used for specific, individual use
cases on a small scale this may not be too much of an issue but it is worth planning and
documenting what and where you are actually capturing when using the tool.

Though conifer focuses on capturing the performative nature of a website, as opposed to the
server files themselves, several conversations with developers raised the importance of
recording and preserving a snapshot of a website as it is intended to work, look and feel. In the
long run, and in combination with the more complete server-side approach, efforts to redeploy
old websites can benefit greatly from having some form of reference available.

Reprozip
In order to test and experiment with the reprozip tool some prior setup needed to be carried out.
The Reprozip documentation11 contains extensive information on setup, installation and use of
the tool but there is still quite a technical barrier in terms of concepts discussed and language
used. My own experiments with using the Reprozip tool led to plenty of troubleshooting and
often far from desired results, but any failings in terms of reproducing use cases is not
necessarily a reflection on the tool itself but rather the steep learning curve that is associated
with such technology. Here I will document my steps taken while learning about the tool.

Installation
First up was installation. I used the same Ubuntu machine running version 18.04.4 as before
and followed the instructions provided in the documentation:

1. Install prerequisite software packages

11 http://docs.reprozip.org/en/1.0.x/

17

http://docs.reprozip.org/en/1.0.x/

Server-Side Web Archiving

- Reprozip requires Python and a pip installer, as well as the below packages by
specific component:

- All packages could be installed with the following command via the terminal:

beng@beng:~$ sudo apt-get install python
python-dev python-pip gcc libsqlite3-dev libssl-dev libffi-dev

2. Reprozip itself was then installed with:

beng@beng:~$ pip install -U reprozip

3. Lastly, Reprounzip, the component responsible for unpacking experiments was installed
using:

beng@beng:~$ pip install -U reprounzip[all]

These steps ensured that all necessary components are present on the machine and the next
stage was to trace and package a website.

Tracing and Packing
During the tracing and packing progress Reprozip tracks the execution of the website
deployment, in this case the files and folders of the target project and the commands to launch
the server. The tracing stage identifies all the operating system calls used during deployment
and captures the environment variables necessary for future re-deployment.
This is achieved by using the following command in conjunction with the original command line
instructions used to deploy start the server:

beng@beng:~/Desktop/Submarine/TheLastHijack/httpdocs$ reprozip trace
php -S localhost:8000

After accessing the deployed project at the specified port the server was then stopped and a
configuration file was automatically created detailing the contents to be included in the packing
stage. This file could be edited to include additional material where needed but in general
should contain everything required for redeployment. Note, the configuration file on my machine
existed in a hidden folder located in the same directory where the trace was run. To access it
the command line and Gedit were used.

beng@beng:~/Desktop/Submarine/TheLastHijack/httpdocs/.reprozip-trace$
gedit config.yml

18

Server-Side Web Archiving

Extract from Config.yml file

Once the configuration file was ready, the final step was to pack the files, detailing the name of
the new .rpz file that was to be created. This would then appear in the same target directory as
the trace.

beng@beng:~/Desktop/Submarine/TheLastHijack/httpdocs$ reprozip pack
TheLastHijack

19

Server-Side Web Archiving

TheLastHijack.rpz file

Reprounzip and Unpacking
The Reprounzip component is used to unpack and redeploy the Reprozip package. The
documentation12 details several possibilities for this process and describes which unpackers to
use in different scenarios. A number of these options were tested, on a variety of operating
systems, and to a varying degree of success.

Firstly, as the original machine used to create and package the Reprozip file was Linux, I looked
at the three unpackers that come with Reprozip, and that are only compatible with a linux
operating system. These were reprozip directory, reprozip chroot, and reprozip installpkgs. The
commands for the unpacking step are the same across each of the unpackers but the only one I
experienced any success with was the reprozip directory option. Below details the steps I took.

1. The Reprozip “.rpz” file created in the packing step was first copied to a Desktop location to
test the unpacking from an entirely new path.

2. After moving into the new current working directory for this package the following
command was run to setup the unpack the experiment:

beng@beng:~/Desktop$ reprounzip directory setup TheLastHijack.rpz TheLastHijack

Here, the reprozip directory setup command is followed by the name of the package and the
name of the target directory.

3. This stage may take some time to complete but when ready the target directory will contain
the unpacked files and folder structure and configuration file from the original Reprozip
package.

12 https://reprozip.readthedocs.io/en/1.0.x/unpacking.html

20

https://reprozip.readthedocs.io/en/1.0.x/unpacking.html

Server-Side Web Archiving

4. To run the newly unpacked experiment again the following command was used:

beng@beng:~/Desktop$ reprounzip directory run TheLastHijack

This initiates the original command line instructions that were run when tracing the
deployment of the website, in this case running the website on the PHP built-in server
on localhost:8000.

From here the project can be interacted with via the browser at the designated port. In the
following section I will briefly describe the results of the unpack and redeployment as well as
some of the issues encountered when attempting to use other unpacking options.

21

Server-Side Web Archiving

5. Results

Upon redeployment of the Last Hijack example it was clear that information was missing. The
website loaded as normal but when navigating through sections of the site links became broken
or pages didn’t display. The packing and unpacking step was repeated several times and it was
made clear that the manual traversal of website elements was needed in order to capture those
files. Alternatively, this would be possible by including all the necessary files in the configuration
file at the editing stage. Due to time constraints this wasn’t possible but is interesting to be
aware of the added manual intervention that needs to be carried out in order to pack a complete
version of the website. Aside from this, the files and elements of the website that were captured,
unpacked and redeployed worked seamlessly, as if deploying directly from the original source
folder. This displays great promise for the tool and its ability to compress and extract the vital
information needed to redeploy the project.

Of course, the use of the reprounzip directory unpacker in its native Linux environment had the
potential to make efforts more straightforward. Other options for unpacking in alternative
environments, i.e Windows and MacOS, include Vagrant13 and Docker14. Both options were
explored but added their own level of complexity that comes with using a new technology.
The Vagrant unpacker allows experiments to be unpacked in a virtual machine and run in an
emulated environment while the Docker version can extract and reproduce experiments as
docker containers, meaning that any environment where these technologies are available should
work. These unpackers follow the same commands for setup and running of a Reprozip
package, as seen from the MacOS terminal

EoinsMacBookAir:Desktop ecodonohoe$ reprounzip docker setup TheLastHijack.rpz
TheLastHijack

EoinsMacBookAir:Desktop ecodonohoe$ reprounzip docker run TheLastHijack

The unpacked project was created with all the same contents and some additional Docker
specific files while the run command encountered what appears to be some Python related
errors that I was unable to interpret. The same issue was encountered while working on a
Windows 10 machine. The execution of and redeployment of Reprozip packages in different
environments is a major draw for the technology. The promising results of the native Linux
Directory unpacker hopefully show that with a greater understanding of the peripheral tools,
such as Vagrant and Docker, greater success could be achieved in other environments.

14 https://www.docker.com/

13 https://www.vagrantup.com/

22

https://www.docker.com/
https://www.vagrantup.com/

Server-Side Web Archiving

The Last Hijack unpacked using docker on MacOS 10.13.6

Terminal display when running reprounzip docker run TheLastHijack

23

Server-Side Web Archiving

6. Recommendations and
Conclusions

Experimentation with the different tools in this report has highlighted the technical barrier facing
heritage institutions when it comes to dealing with such complex examples. Not only does the
target of preservation itself present unique challenges and barriers when it comes to
understanding its construction, the tools used to document and capture such sites also require
a specific technical knowledge for setup, use and troubleshooting. This report aimed to show
the challenges faced while testing such tools and though the results did not display clear
success across multiple platforms there were some promising possibilities to build on going
forward. It should be noted what Reprozip can and cannot capture:

Can capture
- Currently, experiments originally run on Linux
- Binaries, files, dependencies and environment variables that are required to run an

experiment
- Databases and server-client interactions

Cannot capture
- Missing or outdated dependencies: if the website relies on an older version of a piece of

software that is no longer supported, Reprozip cannot fix this issue itself.
- Browser specific requirements: similarly, Reprozip only captures the operating system

environment information for experiments. If a website depends on a specific browser
version this will need to be sourced elsewhere and likely redeployed in an emulated
environment

In light of this, below are the proposed steps for the documentation and capture of dynamic
websites.

1. Selection
- Due to the time consuming and labour intensive nature of capturing dynamic websites,

the selection criteria used when choosing projects to preserve should be considered
carefully.

- At risk technologies should be identified and prioritised with websites using these
technologies a primary focus.

2. Collaboration with Creators
- Website creators should be involved from as early as possible and can act as a valuable

source of technical information.
- Expectations and division of labour, where necessary, should be laid out at an early stage.

Knowing what each party is set to gain and what they should bring to the table is
essential for clear and focussed communication.

24

Server-Side Web Archiving

3. Documentation
- As early as possible, efforts should be made to document the website in operation in its

optimal setting. This can be as simple as a video walk through of the website or, as
detailed in this report, a high fidelity capture of a full site walkthrough using the Conifer
tool.

- Technical listing of environment and software dependencies, programming languages
and version information. A technical interview with creators can help here.

4. Server-side Capture
- Transfer, setup and deployment of website server side files on a suitable system or,

ideally, access to the original server environment where the files are stored
- Installation and execution of Reprozip tool, editing of configuration file, packing and

quality assurance of package.
- The Reprozip package should be tested on a variety of operating systems using different

unpackers.
- Troubleshooting and recapture as needed.

The preservation of dynamic websites is a difficult task due to the complex environments of
such projects. The basic groundwork of identifying what should be captured and preserved as
well as the execution of such a goal is always going to be a more time consuming and labour
intensive task than traditional web archiving but the need to save these works is as important
for both creators and cultural institutions. Both will need to work closely to set goals and
achieve results. If they do,server-side web archiving will provide another preservation strategy
for dynamic web content.

25

Server-Side Web Archiving

7. Glossary of Web Browser
- Related Terms
Add-on
See browser add-on

Application Programming Interface (API)
An Application Programming Interface (API) is a kind of hyper-programming language or library
(or glue) that serves to link external services and programs to a specific platform. For instance,
Firefox created an API in order to enable external programmers to create their add-ons for the
Firefox browser. The APIs are usually specific to a browser. For instance, the Firefox API cannot
be used for Google Chrome.

Bandwidth
In the context of the internet, bandwidth means the highest rate of data transfer possible on a
specific communication path. It is also called network bandwidth and is usually stated in bits
per second.

Browser
See web browser.

Browser add-on
A browser add-on (also known as a browser extension) is a small programming module that
extends a web browser’s functionality—for instance, by adding a toolbar, enabling or disabling
plug-ins, or integrating notebooks or video calling. Browser add-ons are written in the same
programming language as websites (HTML, Javascript, CSS) and need to use the
browser-specific API.

Browser emulation
A browser emulation serves to run an obsolete web browser in order to access obsolete
websites and certain web archives. For instance, websites that need plug-ins can only be
rendered in obsolete browser environments. As obsolete web browser environments only run on
obsolete computer hardware, this hardware needs to be emulated on any client computer with
current hardware. The emulation of the obsolete computer hardware, including the installation
of the obsolete browser environment, is called “browser emulation.”

Browser extension
See Browser add-on.

Browser plug-in
A browser plug-in is an executable, usually made and licensed by an external party in order to
render video, audio, and web animations. It is a deprecated technology. Before the introduction
of HTML5 in 2014, web browsers were not able to render audiovisual content except for still
images. It took several years until web designers adopted HTML5 for video and audio. This is
the reason why browser plug-ins play an important role in rendering obsolete websites.
Examples of browser plug-ins include the Flash plug-in, Shockwave plug-in, and Java plug-in.

26

Server-Side Web Archiving

Cascading Style Sheets (CSS)
CSS is a language that serves to create a template for the layout of a website. In this way, the
content of the website is separated from its layout. This procedure makes it more efficient to
add new web pages or more content to a website.

Client-side
A website is hosted on a web server and accessed through a client computer. The client
computer holds the web browser that is needed to render the website. The web server and client
computer are connected through the internet. “Client-side” refers to the computer with the web
browser.

DNS-Server
The Domain Name System (DNS) is a decentralised inventory of URLs and the corresponding IP
addresses of the web servers where the websites are hosted. A DNS-Server contains such an
inventory. A user’s internet service provider provides such DNS-Servers. DNS-servers are
organized hierarchically.

Document Object Model (DOM)
A Document Object Model is a programming interface used to structure websites in order to
enable the web browser to render them efficiently. The idea is that web pages with embedded
scripts do not have to be reloaded from the web server when executing the script. To achieve
that the DOM structures a web page as a logical tree.

Dynamic web page
A dynamic web page is a web page whose content changes dynamically, usually as a reaction to
user input or to other inputs. There are web pages whose dynamics are embedded in client-side
code, such as Javascript, and can be interpreted by the web browser. Other websites contain
server-side code such as PHP, Python, or Ruby, which are executed on the web server.

Emulation as a Service (EaaS) / Emulation as a Service Infrastructure (EaaSI)
Emulation as a Service is an emulation platform developed by the bwFLA team at the University
of Freiburg (D) that is now distributed by OpenSLX. The platform offers a collection of emulators
and tools to manage created environments. The EaaS platform can be made accessible in a
web browser with internet access. Emulation as a Service Infrastructure (EaaSI15) is an
implementation of the EaaS platform at Yale University. The university and OpenSLX made a
user documentation16 of EaaSI available.

Executable
An executable is a file that needs neither a compiler nor an interpreter to be executed. In
contrast to source code, it is usually not human readable but contains machine code that is
executable on a specific operating system and computer architecture.

Extension
See browser extension and browser add-on

Flash plug-in
The Flash plug-in is a browser plug-in that is able to render vector-based animations with the file
extension SWF. It was developed for the World Wide Web. From 2005 until about 2017, Adobe

16 https://eaasi.gitlab.io/eaasi_user_handbook/ (accessed october 2020)
15 https://www.softwarepreservationnetwork.org/eaasi-gitlab/ (accessed october 2020)

27

https://www.softwarepreservationnetwork.org/eaasi-gitlab/
https://eaasi.gitlab.io/eaasi_user_handbook/
https://www.softwarepreservationnetwork.org/eaasi-gitlab/

Server-Side Web Archiving

Systems developed Flash and Shockwave. Flash files load more quickly whereas Shockwave is
more versatile. Flash and Shockwave are both closed source.

GIF
The Graphics Interchange Format (GIF) is an image format based on bitmap. It can store several
images in one file and is usually used for short animations. GIFs have been popular since the
beginning of the internet.

Graphical User Interface (GUI):
A graphical user interface can be used instead of command line or text interfaces when
interacting with electronic devices like computers. A GUI application usually opens in a window
that consists of graphical elements such as icons and menus. The user interacts with the
computer or application with the mouse by manipulating certain graphical elements instead of
entering a command line in text form. A GUI is usually considered more user friendly than a
command line interface.

HTML
Hypertext Markup Language (HTML) is the language of the World Wide Web. HTML is a markup
language, mainly used to present the content of a website. The interpretation of HTML is the
core function of every web browser. In the beginning of the World Wide Web, web pages
consisted only of HTML. Nowadays HTML is often accompanied by CSS and Javascript
(client-side).

HTML5
HTML5 is a major revision of HTML that had an impact on the way media was integrated in
websites. It was introduced in 2014 and features, amongst other tools, new video and audio
tags in order to handle media natively. As a consequence, plug-ins such as Java or Shockwave
were made obsolete on websites that used these new features. Another important change was
the inclusion of the DOM and the scripting API for Javascript within the HTML specifications.
Through the integration of the Javascript API “webGL” browsers can render interactive 2D and
3D graphics natively.

HTTP
The Hypertext Transfer Protocol (HTTP) is an information transport protocol used when a user
loads and interacts with a website. It is a request-response protocol. The web browser (client)
requests information from the web server and the web server sends a response to the web
browser, which could be HTML files or other resources like image, sound, or video files. HTTP is
the highest level of transport protocol in the internet and it is used for web crawling.

HTTPS
HTTPS or Hypertext Transfer Protocol Secure is the encrypted version of HTTP. It secures the
communication between web browser (client) and web server, which could be otherwise
intercepted and read. In the 2000s, HTTPS was mainly used for payment services such as for
banks and online shopping. All other websites used HTTP. Only in the past few years has HTTPS
become common for all websites, and web browsers have started to block HTTP-websites.

Java applets / Java plug-in / Java Runtime Environment
The Java plug-in is a browser plug-in that can render interactive animations and small design
elements like rollover buttons. These animations were called applets. To run Java applets the
Java Runtime Environment needed to be installed on the client computer. The Java Runtime
Environment is an intermediate layer (a so-called process virtual machine) that makes the java

28

https://docs.google.com/document/d/1bzUp1JbyMO5OTb7bQPlCS3vS2Av4tBT9V9aLA0hojMg/edit#heading=h.s7jdttltnlc
https://docs.google.com/document/d/1bzUp1JbyMO5OTb7bQPlCS3vS2Av4tBT9V9aLA0hojMg/edit#heading=h.eqtg3zaybm9g
https://docs.google.com/document/d/1bzUp1JbyMO5OTb7bQPlCS3vS2Av4tBT9V9aLA0hojMg/edit#heading=h.klfkqcqyt3v5

Server-Side Web Archiving

applets independent from the underlying operating system. According to Wikipedia,17 the Java
Runtime Environment “contains a stand-alone Java virtual machine (HotSpot), the Java standard
library (Java Class Library), a configuration tool, and—until its discontinuation in JDK 9—a
browser plug-in.” Java was closed source until 2007. From 2010 until 2016 it was developed by
Oracle. It was replaced by Javascript.

Javascript
Javascript is one of the most important web programming languages. It is used to program
interactive behaviour on a website and to create web animations. Web browsers can interpret
Javascript. Javascript is mainly used for client-side programming on a web page (called a
client-side dynamic web page), although it can also be used for server-side programming
(server-side dynamic web page).

Plug-in
See Browser plug-in

Server-side
A website is hosted on a web server and accessed through a client computer. The client
computer holds the web browser that is needed to render the website. The web server and client
computer are connected through the internet. “Server-side” refers to the web server that holds
the code for the website.

Shockwave plug-in
The Shockwave plug-in is a browser plug-in that can render Shockwave animations with the file
extensions DCR, DIR, or DXR. While Shockwave was developed to create CD-ROMs, it was later
used for the creation of many online video games. From 2005 until about 2017, Adobe Systems
developed Flash and Shockwave. Flash files load more quickly, whereas Shockwave is more
versatile. Shockwave and Flash are both closed source.

Source code
Source code is higher-level code that is human readable and that cannot be executed without
translation into machine code. To execute source code, usually an interpreter or a compiler is
necessary.

Static web page
A static web page directly loads its content from the web server without any server-side
processing and without interactive behaviour on the client side. Such pages are usually just an
HTML document and might include layout defined in CSS.18

URL
The Uniform Resource Locator (URL) is the address of a website or web page, which points the
web browser to the location of the web server holding the website. The address consists of
generally meaningful text and is easier for users to remember than the IP address of a web
server, which is a long number. In order to look up the IP address of the web server, the web
browser contacts a DNS-server (usually the one provided by the Internet Service Provider of the
user).

Web browser

18 Other definitions include client-side Javascript functionality in the definition of a static web page (s.
https://en.wikipedia.org/wiki/Static_web_page, accessed 2020/09/02)

17 https://en.wikipedia.org/wiki/Java_virtual_machine accessed 2020/10/21

29

https://en.wikipedia.org/wiki/HotSpot
https://en.wikipedia.org/wiki/Standard_library
https://en.wikipedia.org/wiki/Standard_library
https://en.wikipedia.org/wiki/Java_Class_Library
https://en.wikipedia.org/wiki/Static_web_page
https://en.wikipedia.org/wiki/Java_virtual_machine%20accessed%202020/10/21

Server-Side Web Archiving

A web browser is a complex piece of software with a graphical user interface that connects the
user to the web server containing the website and enables the rendering of the web page and
the interaction between the user and web page. If you look at a web page without a web
browser, for instance with the Linux command “curl,” the served web page will consist only of
source code—such as HTML, CSS, or Javascript code—which would be interpreted by the web
browser. A web browser can be installed on clients’ computers and mobile devices.

World Wide Web (www)
The World Wide Web is a network of websites that are identified with Uniform Resource
Locators (URL). The users communicate with the web servers with HTTP and HTTPS and need
web browsers to render the web pages.

30

https://docs.google.com/document/d/1bzUp1JbyMO5OTb7bQPlCS3vS2Av4tBT9V9aLA0hojMg/edit#heading=h.3nxggwopdkr1

Server-Side Web Archiving

Credits

Eoin O’Donohoe, author of this report, is a Digital Preservation Analyst at the Netherlands Institute
for Sound and Vision (Nederlands Instituut voor Beeld en Geluid). He is currently working on areas of
research that aim to lower the threshold for institutions looking to make a start on software archiving.

eodonohoe@beeldengeluid.nl

About this publication

This report was published by the Dutch Digital Heritage Network (NDE) in May 2021.
For further information, see: netwerkdigitaalerfgoed.nl

If you have any queries or comments about the contents of the report, please feel free to email us at:
info@netwerkdigitaalerfgoed.nl

mailto:eodonohoe@beeldengeluid.nl
https://www.netwerkdigitaalerfgoed.nl/
mailto:info@netwerkdigitaalerfgoed.nl

