
Independent Research

 1 © 2020 mroling

Does Handwriting Text Recognition
Work for Damaged Archives?

Marco Roling MA
E-mail: info@marcoroling.nl

Abstract

Handwriting Text Recognition (HTR) is used on a large scale for digitized archives, but so far
experiments have focused on manuscripts with a high standard of preservation and legibility.
This paper describes some controlled experiments done on text samples with various types
and degrees of archival damage, in order to assess their suitability for HTR. Also some ideas
are expressed about how to predict the success of HTR when it is applied to large volumes of
scans. Lastly, it is suggested to enhance scans before subjecting them to the HTR process,
with the intention to further improve the overall quality of automated transcriptions.

Published: March 2020
Keywords: HTR, Ink corrosion, Manuscript, Image processing, Machine learning, Archival

damage, Automated transcription

1. HTR and the promise of automated transcription

In recent years, Handwriting Text Recognition (HTR) of
manuscripts has dramatically improved. The machine learning
capabilities of computers, using neural networking, pattern
recognition and probability algorithms, have almost reached
maturity and are starting to be applicable to larger volumes of
scans of handwritten documents. There are several academic
research groups around the globe who are active in this field.
One of them is READ-coop, a European cooperative
institution that originated from the University of Innsbruck,
and that has developed the end-user tool called Transkribus
over the last years.1 Transkribus runs on a home computer
with the real processing done remotely on an Austrian server.
Scanned images of handwritten documents can be uploaded
and transcriptions automatically generated for these pages
using a previously trained HTR model (figure 1).

Automated transcription results come close to perfection,
with only some margin of error. Results can be used
immediately in a full text search engine, can be analysed
linguistically or processed for named entity recognition. In
this way manuscript archives can become more accessible and
usable to scholars without them having to take extensive

1 https://read.transkribus.eu/

palaeography classes first and to read page by page to locate
historically relevant information.

Besides using automated transcription, anyone with
manuscript scans can start and train an HTR model from
scratch or on top of an already existing one. Scans with
matching ground truth transcriptions can be fed into the
computer learning engine and the resulting trained model can
again be shared with others. A model can be based on any
number and any type of documents and can be any language.
Even printed text can be used (until recently the sole domain
of Optical Character Recognition, OCR), which is useful as
printing goes back to the 16th century and old fonts might not
be recognized in modern OCR so easily. Consistent character
writing such as in medieval texts, or Arabic or Japanese
scripts, are other examples of texts that can be used for training
an HTR model. The engine is robust and can handle some
amount of image noise, and lines do not need to be perfectly
straight and consistently written. Several writers can be in the
same collection of manuscripts, which can improve the model
even further making it better trained and applicable to a larger
variety of sources. Nowadays, HTR can be regarded as a
promising tool for automated conversion of handwritten text
into digital text.

Does Handwriting Text Recognition Work for Damaged Archives? Marco Roling MA

 2

Figure 1 – HTR interface showing a text sample and automated
transcription

1.1 The challenge of transcribing damaged archives

Today, more and more institutions with manuscript archives
are eager to upscale their digitization because automated
transcription is now within reach, and publication online with
full digital text search is the next stage in providing access to
the general public. Some digitization projects, like for
example the ones of the National Archives of the Netherlands
and the City Archives of Amsterdam, have already resulted in
millions of scanned documents suitable for applying HTR, and
transcription has already begun. Projects to fully disclose the
texts are progressing, sometimes with the aid of dozens of
enthusiastic crowd sourcing volunteers to make the outcome
even better.

The archives used for training the models have mostly been
the well preserved ones. This makes sense, as new technology
at first needs to be proven under optimal conditions before
starting to experiment with sources that are of a lesser quality.
Some manuscript archives may have suffered from all kinds
of damage over the past centuries, even leading to partial loss
because of flooding, fire, insects or ink corrosion. While HTR
obviously can’t recreate lost archives, some forms of archival
damage may still yield an acceptable digitized text.

A good example of the differences in preservation between
parts of the same archive is that of the Dutch East India
Company, formed during the 17th and 18th century. This large
archive was not only created in Holland, but also in several
colonies and trading places around the world like present day
South Africa, India and Indonesia. The archives in Indonesia,
for example, were stored for centuries under tropical humid
conditions and this led to all imaginable forms of archival
damage. Not everything suffered, and some parts are

2 https://irongallink.org/igi_index.html
3 The author attending a lecture (2020) by Birgit Reissland and
Frank Ligterink on the drawings by Rembrandt.

surprisingly well preserved, but the legibility of the texts is
sometimes severely reduced because deterioration processes
continue to affect the original sources. Three of these
processes are discussed here in relation to HTR. Paper
discoloration from almost white to dark brown; the fading of
the ink from dark brown to almost invisible; and ink corrosion
that leads to blurring of the text (figure 2). In combination they
can be really devastating, causing the text to become fully lost
to the eye, or completely bleed into the paper as a big ink stain.

Figure 2 – Original text and constructed samples with archival damage

Much historical and also practical research has been done

on the physics of paper and ink, and how they interact2. The
specialized craft of paper making was done only in few places
in the Dutch Republic, using wind and water powered mills,
and linen textiles as raw materials. Holland, and especially
Amsterdam, were very active in printing books, newspapers,
maps and flyers and this demanded a constant influx of paper.
Local production volumes were insufficient most of the times
and even paper mills in France and Germany were
commissioned to supply for the Dutch market.3

Besides printing, writing and packaging also required
paper, but of a different texture and density. It can be expected
that all these different kinds of paper were also transported to
Batavia, in the former Dutch East Indies, and used for writing
and archiving. Paper sent to Batavia was not always of the best
quality, and it took a long time to get there under less than
optimal conditions. The ink was most likely also transported,
as the ingredients for making iron-gall ink originate from
different places in Europe and the Levant, and ink-making and
selling was a thriving line of business. Bird feathers used for
writing may have been locally produced around Batavia, but
this is unknown. In Europe there was a specialized trade in
goose and raven feathers4. One can imagine that the quality of
paper, ink and writing feathers all had an influence on the
handwriting and the possible susceptibility of the finished
manuscript to various forms of decay over time. The present-
day state of these manuscripts is the result and has to be dealt
with when applying modern HTR.

4 See also: https://www.nicas-research.nl/

Does Handwriting Text Recognition Work for Damaged Archives? Marco Roling MA

 3

The question arises if acceptable digital transcription
results are achievable even if these archives have suffered
archival damage.

1.2 Using a Dutch language model for HTR 

For a number of years, several institutions in the Netherlands
and Belgium have been working on HTR models based on the
Dutch language and Dutch archival sources. The National
Archives of the Netherlands (NAN) published a public HTR
model as recently as January 2020. NAN holds a large part of
the archives of the Dutch East India Company, and has used a
selection of 4810 scanned pages from the inventory numbers
7528-9540 for training an HTR model.5 This model is known
as ‘NAN_GT_M11+’ in Transkribus. It is based on 17th and
18th century source material and is expected to give
acceptable results, suitable for application to similar
manuscripts housed at the Indonesian counterpart. The so-
called Character Error Rate (CER6) of the model, measured on
the ground truth examples, was reported to be 5.3% and 7.3%
on a separate random sample set. This means that well over
90% of the text is correctly transcribed automatically, which
is acceptable for immediate full text search. This model was
used in the HTR experiment conducted by the author.

The experiment focused on three different types of archival
damage, namely paper discoloration, ink fading and ink
corrosion. These were chosen because they were expected to
have a measurable effect on the outcome of HTR processing.
This hypothesis was tested using the mentioned model with a
known quality and performance level against a series of
constructed samples that reflect progressive archival damage.
A base sample was first manually created and by varying
different image layers and aspects, another 42 test samples
were created to reflect different stages of degradation. Images
were created using regular end user software. Six categories
were defined to scale the degree of degradation, from ‘some’,
‘mild’, ‘moderate’, ‘serious’, and ‘severe’ to ‘extreme’
archival damage. These categories were based on the
Metamorfoze archive damage atlas in which many more types
are described.7

The base sample (figure 3, first sample on the left) was
recreated using a snippet of text copied from the published
archives of the Dutch East India Company on the website of
‘Sejarah Nusantara’8 of the National Archives of Indonesia in
collaboration with The Corts Foundation9. This collaboration
led to the online publication of 1.1 million scans, all from the
17th and 18th century. The sample snippet used for this

5 Keijser [2]
6 CER is the percentage of characters that differ from the known
perfect ground truth transcription, initially used in the model
training. Besides CER there is also a WER (Word Error Rate) that
reflects the number of words that differ. Both indicate a quality
measure for the accuracy of the HTR model

research was originally copied from inventory number 2567,
page 304, of the sub archive of the Daily Journals of Batavia
Castle by the High Government.10 The snippet, dated May 3,
1735, is actually a Dutch translation of an originally Javanese
letter from the Sultan of Cheribon to the Governor General of
Batavia, with a very polite thanks for granting him the title of
Sultan after succeeding his father and older brother. The nine
lines of text contain 85 words and 435 characters and although
short, this is regarded sufficient for the experiment as the
comparison between the outcomes of all samples is the focus
of the analysis.

Figure 3 – Constructed test samples with increased paper colouring

2. Running HTR on constructed samples

Testing the model first against the base sample gave a
benchmark CER to be used as a reference for the other
constructed samples. The model had an outstanding
performance, with a low CER of 1.6%. Only seven characters
were not recognized properly (differences in capitals were not
regarded as errors and ignored). This first test proved that the
model was well suitable for the experiment. Next, samples
reflecting degradation through paper discoloration from
almost white to brown were tested (figure 4, column
‘browning’). The results showed some variation in CER, a
little higher than the benchmark, but this could not be regarded
as really significant. It seemed that the browning of the paper
hardly influenced HTR.

To continue, samples with progressive stages of ink fading
were tested. Results were similar and fading did not seem to
have a real negative effect on HTR. But when paper
discoloration and ink fading were combined, an interesting
break point showed up. Perhaps not surprisingly, when the
paper had become severely brown and the ink severely faded
the difference in contrast between the two was reduced to
almost zero and HTR failed completely. It can be concluded
though that HTR is robust as long as there is some difference
in contrast between paper and ink. It is probably fair to say
that if the human eye can still distinguish between the text and

7 See: schadeatlas-2010, https://www.metamorfoze.nl/
8 https://sejarah-nusantara.anri.go.id/
9 https://www.cortsfoundation.org/
10 Original scan can be found on:
https://sejarah-nusantara.anri.go.id/marginalia_search/

Does Handwriting Text Recognition Work for Damaged Archives? Marco Roling MA

 4

the paper background, HTR will also be able to recognize the
text without significant loss compared to the original.

When testing samples with worsening ink corrosion, HTR
results showed a dramatic increase in CER when a ‘serious’
degree of damage was present in the sample (figure 4). The
CER graph started to show a steeply rising curve and HTR
yielded poor results. It needs to be pointed out, however, that
the used model was not trained to recognize blurred characters
and words. When taking this into account, the results are
actually not that bad, and up to a ‘moderate’ degree of ink
corrosion HTR still leads to automated transcriptions that may
be acceptable for full text searching.

Figure 4 – CER results of HTR on scans with combined archival damage in
different stages

Figure 5 – Constructed samples (extreme ink corrosion on the right)

Combining paper discoloration and ink fading with ink

corrosion led to more difficulties. Creating the test samples in
the first place was a challenge, and applying HTR gave results
that needed some additional analysis. In any case it appeared
that a rise in ink corrosion accelerated the increase of the CER.
In fact, the ink corrosion factor dominated the simultaneous
effects of paper discoloration and ink fading in the results. The

worst test sample (see ‘b+f+c’ column with ‘extreme’ archival
damage) eventually gave a CER of 55.6%. This result cannot
be used for full text search. The initial ground truth
transcription and matching HTR results are given here to
illustrate this.

Ground truth original transcription text
Nadien uw hoog edelens mij in het bestier van mijn ouder
broeder Sulthan Cheribon hebben gelieven te stellen , en teffens
te vereeren met den titul van Sulthan Cheribon benevens dese
krits en sComp: Zegul, gelijk het een en ander door voorm: ouder
broeder gebruijkt geworden is, Zoo betuijge des wegen mijne
menigvuldige dankbaarheijd voor uw hoogedelens groote gunste,
want mijn herte is daar over Zodanig verheugd, als off uw hoog
edelens mijn vader en ouder broeder van den doode opgeweckt
en levende gemaekt hadde:

HTR result transcription text (CER 55.6%)
Naen zen hoog elens wij ten het teste van mijen aeden
beln sutlan Clerilora hebten geteenen te sallen, : te
te twaaan achb den : waar alulem: k s
kner vn pe keijent ggel het n no zindar dara ame m
boeken getangis: geerha is, zer bnge ds wegem
vatrige 20 akaaahejjd en Cosheekens geente geemt:
waar mijt loot son vaer Petnij verlnge, as en kog
Eete mijn an Er beelden van de dts opg
vonde ccasil haer

2.1 HTR predictive modelling

In the previous section, we have seen how HTR performs
when applied to constructed samples of handwritten texts with
increasing archival damage. It appeared that the colour of the
ink and paper separately hardly influenced HTR but the
combination did, as decreasing contrast between ink and paper
led to them becoming indistinguishable. The complex colour
gradients in ink corrosion also turned out to have a major
impact. In order to assess if scans of manuscripts lead to
acceptable results in HTR processing, the next step would be
to find some automated computational way to perform
measurements on individual scans.

Predicting the success of HTR requires more detailed
understanding of the image characteristics in terms of colour,
contrast and gradients. In a first attempt, colour and grayscale
histograms were computer generated. In the colour histogram
the image colours were separated in three basic channels of
red, green and blue and plotted in a 3D cube visualization with
their original colours. Before visualizing the sample image
this way, the colour data was filtered to reduce noise, some of
which originated from JPG compression in the image source
file. HTR has already been proven to be robust to some degree
of noise, and filtering made the resulting graph more
interpretable. For the second grayscale histogram the
unfiltered image data was used to show all colour gradients.

CER result b(rowning) f(ading) c(orrosion) b+f b+c f+c b+f+c
some 2.5% 3.2% 2.3% 3.4% 2.1% 2.8% 2.8%
mild 2.8% 3.0% 4.1% 3.0% 3.4% 3.4% 3.2%

moderate 3.4% 2.8% 4.8% 4.8% 6.0% 3.2% 4.4%
serious 3.2% 2.5% 8.5% 2.8% 12.9% 3.7% 6.7%
severe 1.4% 3.2% 20.2% 100.0% 28.0% 3.4% 33.3%

extreme 1.8% 3.0% 33.6% 100.0% 48.7% 5.5% 55.6%

Does Handwriting Text Recognition Work for Damaged Archives? Marco Roling MA

 5

The first sample discussed here was manually constructed.
The sample showed some paper discoloration and slight ink
fading, but no noticeable ink corrosion (figure 6). The colour
histogram of this sample showed distinctly separated clusters
of a light and darker brown. The light brown cluster included
a large marker that clearly indicated the discoloured paper
background. In the most ideal case, when the paper colour
would have been white and the ink colour black, these clusters
would be even further apart in the histogram towards the
extreme left lower and right upper corner. When converting
the original colour image into grayscale, it showed distinct
peaks in the histogram, but the expected bimodality turned out
to be trimodal. probably as a result of JPG compression noise
being present in the image.

Figure 6 – Constructed sample with mild archival damage, with colour and
grayscale histograms

It can be argued that samples with distinct colour clusters are
at least theoretically ideal for HTR, as the histogram indicates
a clear distinction between ink and paper and suggests optimal
legibility for man and machine.

Copied from a scan of the original manuscript, the second
snippet turned out to be much more complex than the
manually constructed one discussed before. The snippet also
showed other signs of archival damage processes. For
example, the text on the back was shining slightly through to

the front side due to the ink corrosion process that had
progressed through the paper (so called: ink bleeding).
Although still well readable for the trained historian, the
colour histogram of this sample (figure 7) showed a
continuous gradient in the colour spectrum from ink to paper,
very different from the previous example. The colour
histogram revealed no clear distinction between ink and paper.
The grayscale histogram again showed a trimodal graph, but
with the peaks much more connected. The width of the farthest
left one (indicating the dark text part) cannot be simply
interpreted as a grade for the ink corrosion. Based on these
first observations it cannot be concluded that histogram data
is a good candidate for use in HTR predictive modelling.

Figure 7 – Real-life sample with more complex archival damage, with
colour and grayscale histograms

Alternatively, ink corrosion might be approached similar to
image blurring. The handwritten text can be regarded as a
picture that is somewhat out of focus. The blurring of an image
can be assessed with a computated value, using existing
mathematical calculations (the one used here is known as
‘Lapacian’). Calculation was done for all the constructed ink
corrosion examples. The plotted graph showed a clear
downward trend line in which high values are to be interpreted
as a low corrosion grade and vice versa (see figure 8).

Does Handwriting Text Recognition Work for Damaged Archives? Marco Roling MA

 6

Calculating the blurring for the original image, with even less
than ‘some’ ink corrosion, resulted in a grade 207. This value
seems to conflict with the ‘serious’ ink corrosion grading
reflected in the graph. This could indicate that the constructed
samples do not accurately represent real samples, which tend
to be much more complex. Testing a few other real manuscript
snippets with different grades of ink corrosion did suggest,
however, that the trend line could be similar, although the
actual value range differs, starting at a much lower maximum
than shown in the graph below. For now it seems promising
that blur grading is a candidate for use in HTR predictive
modelling. More research is to be done in order to investigate
other existing algorithms that might be suitable as well.11

Figure 8 – Blur calculation for constructed examples of ink corrosion

2.2 The effect of image enhancement on HTR

It is expected that digital elimination of the paper colour and
any traces of back side text will increase the automated
transcription quality of a scan image. Cleaning up scanned
images is possible to a large extent, as Schomaker and He
(2019) have already proved. Neural network deep learning
algorithms can already reduce most of the image noise as an
intermediate enhancement step, thus leaving the frontal texts
with much better contrast and less colour gradient.12

In addition, digital reduction of ink corrosion effects in
particular can be tested as well. In order to illustrate its
potential, one of the constructed examples with ‘extreme’ ink
corrosion (shown before in figure 5) was converted into
grayscale and subsequently subdued to so-called binarization
with a manually chosen threshold (figure 9).13 The threshold
used for this example was lowered as much as possible to

11 Rosebrock, A. 2015, see:
https://www.pyimagesearch.com/2015/09/07/blur-detection-with-
opencv/

maximize the reduction of ink corrosion (eventually chosen to
be only 3 on a scale to 255). In the HTR result, the CER was
down from 33.6% to 2.8%, an overwhelming improvement
and with an acceptable automated transcription. Although the
constructed example used here may not fully represent real
examples with extreme corrosion, it is still worthwhile to
further investigate the use and implication of this method.14

Figure 9 – Original sample (left) and image-enhanced sample (right)

Summary

Handwriting Text Recognition (HTR) has developed into a
useful and applicable machine learning tool to automate the
transcription of manuscripts into digital texts. Although many
archives are well preserved and highly suitable for HTR, some
archives have suffered damage for centuries because of
suboptimal preservation conditions and lower quality
materials like paper and ink. It is important to assess whether
these archives are also suitable for HTR. Digitizing millions
of pages is time and resource consuming and only meaningful
if the resulting texts are legible. This raises the question to
what extent HTR still produces acceptable results for damaged
archives. To investigate this, controlled experiments were
conducted by the author using an excellent HTR model
created by the National Archives of the Netherlands, and a
series of manually constructed test images that reflect the
increasing damage from paper discoloration, ink fading, and
ink corrosion. Combinations of these processes were included
in the sample set comprising a total of 42 images.

From the results, it can be concluded that ink corrosion has
by far the most negative influence on HTR, when compared to
paper discoloration and ink fading. Actually, the last two
hardly influence HTR results individually. However, when
they are combined, there is a clear break point beyond which
there is almost zero contrast between the ink and the paper,
and the text is no longer visible. On the positive side, HTR is
sufficiently robust to handle a moderate degree of ink
corrosion, even though the used model was not originally
trained with degraded archival material. It may therefore be
possible to improve the model by training it with additional
scans that have a higher degree of corrosion. But it cannot be

12 Schomaker, He [1]
13 https://en.wikipedia.org/wiki/Thresholding_(image_processing)
14 See appendix 2 for the code used in this experiment

damage grade
none 2931
some 2105
mild 1317
moderate 565
serious 219
severe 102
extreme 92

Does Handwriting Text Recognition Work for Damaged Archives? Marco Roling MA

 7

assessed here if this would substantially improve the model,
lowering the CER on the corrosion samples.

The author has some doubt about the accuracy of the
constructed samples that combine two or three types of
archival damage. An attempt could be made to improve the
test samples, but at the moment it is not regarded likely that
this would change the conclusions drawn so far. Additional
research is advised focusing on other forms of archival
damage that has affected manuscripts partially, such as burn
marks, water stains, and small insect holes.

Prediction of possible HTR success over a large volume of
scanned manuscripts requires some form of computation that
deals with recognizing the contrast difference between ink and
paper on the one hand, and ink corrosion effects on the other
hand. At first glance, using colour histograms appears to be
promising, but only seems to be working for the constructed
sample images with limited colour gradients. Real samples are
much more complex and even extreme reduction of colour
noise from the image data does not lead to a clear difference
in the graph between the frontal text and paper background.
Calculating blur grades does, however, seem to be effective
and exact, although there is a difference between the
constructed and real samples in terms of the range of grading
values. Additional research with many more real samples is
needed to verify if this method is indeed useful in practice.
Further research is advised here in general to try and find other
reliable computational methods for use in HTR predictive
modelling.

Finally, some effects of scan image enhancement were
tested with HTR. Apart from the automated removal of
background colour and noise using deep learning algorithms,
the digital reduction of some of the ink corrosion effects was
found to contribute much to the quality of the resulting
automated transcription. Applying image conversion to
grayscale and subsequent binarization with a chosen threshold
is promising and can be further optimized, maybe in
combination with additional machine learning capabilities.
Other computer vision and machine learning algorithms can

be researched for their potential use in image enhancement of
handwritten documents.

The hands-on experiments as presented in this paper were
conducted in order to better understand and predict the
potential of HTR for archival manuscripts with some degree
of archival damage. The presentation aims to reach a broad
audience, in particular archival institutions, museums and
libraries. It is clear that much more research needs to be done
on this most interesting and challenging topic. Progress is
ongoing, hopefully leading to additional end user tools that
will assist owners of manuscript archives in their assessment
and preparation for successful and large scale application of
HTR.

Acknowledgements

Special thanks to Frank Ligterink for providing useful python
code samples, Monika Cunnington for reviewing and editing,
and finally the READ team for creating the Transkribus HTR
tool in the first place.

References

[1] Schomaker, L., He, S. Pattern Recognition Volume 91, July
2019, Pages 379-390, Online:
https://www.sciencedirect.com/science/article/abs/pii/S0031320
319300330

[2] Keijser, L., NAN. (2020). Scans and transcriptions of the VOC
and the Haarlem notarial deeds archives (Version 2.1)
Online: http://doi.org/10.5281/zenodo.3672406

Appendices

[1] Computer generated colour histogram – code example
[2] Computer generated grayscale histogram and image

enhancement – code example
[3] Computer generated image blur grading – code example

Appendix 1: Computer generated colour histogram – code example

It shows a histogram, where RGB channels are separated along the axes
Any JPG image is read and each pixel colour evaluated and counted
The resulting cube shows the spread of colours, and their relative counts (dots size)

This plot was developed with the aim to support analysis of scans of handwritings (ink on paper)
to see if a histogram would be useful somehow to mathematically calculate and assess the application of
automated text recognition.

This code can be run directly in a Jupyter notebook
Installation prerequisites are: python, pip, ipython jupyter, numpy, matplotlib

%matplotlib notebook

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from datetime import datetime

Set basic input parameters here for further processing
file_img_input = 'Sample_original' # define image file name
nbins = 32 # define number of bins to be used
thresh_low = 5000 # define num_pixels minimum per bin for final cube

Define input and output image
imgname_input = file_img_input + '.jpg'
plot_log = file_img_input + '_log.txt'
plot_output = file_img_input + '_histcube.jpg'

Open logfile for writing
file = open(plot_log,'w')

Read image as a 3d numpy array
img = plt.imread(imgname_input)

transform values as float
img = img.astype(np.float32) / 256

make a list with rgb values based on the array
rgb_list = img.reshape(-1, 3)

print and write to log
img_height = img.shape[0]; img_width = img.shape[1]; img_channels = img.shape[2]
line = '[IMAGE]' + '\n' + 'image_name=' + file_img_input + ' / dateTime_processed=' + str(datetime.now()) + '\n'
print(line); file.write(line)
line = 'dimension HeightWidthChannels=' + str(img_height) + '/' + str(img_width) + '/' + str(img_channels) + '\n'
print(line); file.write(line)
line = 'num_pixels=' + str(len(rgb_list)) + ' / upper_left_pixel_rgb=' + str(img[0,0]) + '\n'
print(line); file.write(line)

create a 3D histogram
hist, edges = np.histogramdd(rgb_list, bins=nbins, range=[[0,1], [0,1], [0,1]])

make a list of of the 3D histogram
hist_list = hist.flatten()

get the values of the non-zero bins
indices = np.argwhere(hist_list > 0).flatten()
h = hist_list[indices]

start cleanup of the histogram, print and write to log
max_num_px_perRGB = int(max(h))
line = '[BEFORE CLEANUP] num_bins=' + str(h.size) + ' / max_num_px_perRGB=' + str(max_num_px_perRGB) +
'\n'
print(line); file.write(line)

Does Handwriting Text Recognition Work for Damaged Archives? Marco Roling MA

 9

reduce noise by applying a lower threshold on the bins
thresh_low_indices = h < thresh_low
h[thresh_low_indices] = 0

assuming that the highest bin contains the background colour, it is reduced here from the plot
BGcolor_index = h == max_num_px_perRGB
h[BGcolor_index] = 0

end cleanup of the histogram, print and write to log
line = '[AFTER CLEANUP] threshold_px_perRGB=' + str(thresh_low) + ' / bins_set_to_zero=' + str((h == 0).sum())
+ '\n'
print(line)
file.write(line)

fill 3D grid
mgrid = np.mgrid[0:nbins, 0:nbins, 0:nbins] / nbins
mgrid = mgrid.transpose(1, 2, 3, 0)
mgrid = mgrid.reshape(-1, 3)

mark colors
m_colors = mgrid[indices]

define the rgb coordinates of each bin
m_r, m_g, m_b = mgrid[indices].T

redefine marker size, in order to scale down larger markers
m_s = h**(1/1.8)

prepare to plot the data cube
fig = plt.figure(figsize=[10, 10]) #set the figure size of plot
ax = fig.add_subplot(111, projection='3d') #set the type of plot
ax.set_xlabel('red channel') #set the label of the x-axis
ax.set_ylabel('green channel') #set the label of the x-axis
ax.set_zlabel('blue channel') #set the label of the x-axis
ax.set_title('RGB Image Histogram Cube: ' + file_img_input) #set the label of the x-axis
ax.set_xlim([0,1]); ax.set_ylim([0,1]); ax.set_zlim([0,1]) #set the scale of the x,y,z-axis
ax.view_init(elev=10, azim=-45) #set the initial elevation and azimut of the plot

plot the data cube
ax.scatter(m_r, m_g, m_b, s=m_s, c=m_colors)

save the data cube image to disk
plt.savefig(plot_output)

Close file for writing
file.close()

Appendix 2: Computer generated grayscale histogram and image enhancement – code example

It shows another histogram, where RGB is converted into grayscale
Next the image is filtered using a threshold, leaving dark text only

This code can be run directly in a Jupyter notebook
Installation prerequisites are: python, pip, ipython jupyter, numpy, matplotlib

%matplotlib notebook

import cv2
import numpy as np
from matplotlib import pyplot as plt

Set basic input parameters here for further processing
file_img_input = 'Sample1' # define image file name
threshold = 100 # define grayscale threshold for cleanup (0=black, 255=white)

Does Handwriting Text Recognition Work for Damaged Archives? Marco Roling MA

 10

Define input and output image
imgname_input = file_img_input + '.jpg'
imgcolor = cv2.imread(imgname_input)
imggray = cv2.imread(imgname_input, 0)
imgname_output = file_img_input + '_enhanced.jpg'

#decrease size and show image for reference in a popup window
scale_percent = 25
width = int(imgcolor.shape[1] * scale_percent / 100)
height = int(imgcolor.shape[0] * scale_percent / 100)
dsize = (width, height)
img_resized = cv2.resize(imgcolor, dsize)
cv2.imshow('original color image: ' + imgname_input,img_resized)
cv2.waitKey(0) # waits until a key is pressed
cv2.destroyAllWindows() # destroys the window showing image

#convert to grey scale image, apply binarization and show histogram
ret, imgf = cv2.threshold(imggray, threshold, 255, cv2.THRESH_BINARY)
#ret, imgf = cv2.threshold(imggray, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU) #OTSU is not used`here

plt.subplot(3,1,1), plt.hist(imgcolor.ravel(), bins=256)
plt.xlabel('Grayscale [dark to light]')
plt.ylabel('Number of pixels')
plt.axvline(x=ret, color='r', linestyle='dashed', linewidth=1)
plt.title('Histogram')

plt.subplot(3,1,2), plt.imshow(imgcolor,cmap = 'gray')
plt.title('Grayscale image: ' + imgname_input)

plt.subplot(3,1,3), plt.imshow(imgf,cmap = 'gray')
plt.title('With thresholding: ' + imgname_output)

plt.show()
plt.imsave(imgname_output, imgf)

Appendix 3: Computer generated image blur grading – code example

It shows an image and calculated blur grade, indicating possible ink corrosion

This code can be run directly in a Jupyter notebook
Installation prerequisites are: python, pip, ipython jupyter, numpy, matplotlib, imutils

%matplotlib notebook

import the necessary packages
import argparse
import cv2
import numpy as np
from imutils import paths
from matplotlib import pyplot as plt

def variance_of_laplacian(image):
 # compute the Laplacian of the image and then return the focus
 # measure, which is simply the variance of the Laplacian
 return cv2.Laplacian(image, cv2.CV_64F).var()

Set basic input parameters here for further processing
file_img_input = 'Real_Sample3' # define image file name

Define input and output image
imgname_input = file_img_input + '.jpg'
imgcolor = cv2.imread(imgname_input)
imggray = cv2.imread(imgname_input, 0)
imgname_output = file_img_input + '_enhanced.jpg'

Does Handwriting Text Recognition Work for Damaged Archives? Marco Roling MA

 11

#set image
image = cv2.imread(imgname_input)
#decrease size
scale_percent = 50
width = int(imgcolor.shape[1] * scale_percent / 100)
height = int(imgcolor.shape[0] * scale_percent / 100)
dsize = (width, height)
image_resized = cv2.resize(imgcolor, dsize)
#convert to grayscale
grayimage = cv2.cvtColor(image_resized, cv2.COLOR_BGR2GRAY)

calculate and show blur
fm = variance_of_laplacian(grayimage)
show the image
cv2.putText(image_resized, "{}: {:.2f}".format("blur grade: ", fm), (10, 30),
 cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 3)
cv2.imshow("Image: " + file_img_input, image_resized)
key = cv2.waitKey(0)#

