
Digital Humanities Workshops - HS 2022
Bern Switzerland

Advance Text Recognition using PyLaia Toolkit
Practice Session

By
Alejandro H. Toselli and Joan Andreu Sánchez

[ahector,jandreu]@prhlt.upv.es

Pattern Recognition and Human Language Technology Research Center
Universitat Politècnica de València

November 29th, 2022

1 Introduction: PyLaia Toolkit
PyLaia1 is a device agnostic, PyTorch2 based, deep learning toolkit specialized for handwritten text
recognition (HTR). It is the successor of Laia ToolKit.3 Mostly developed by Joan Puigcerver and
Carlos Mocholí (both from the Universitat Politècnica de València), PyLaia implements a Deep Con-
volutional Recurrent Neural Network (CRNN) trained with Connectionist Temporal Classification
(CTC). The main improvements of PyLaia with respect to Laia are:

• more efficient: in terms of RAM resource utilization and processing time.

• portability: source code written in Python and based on the deep-learning PyTorch platform.

• running on both CPU and GPU hardware (with multi-GPU capability).

PyLaia is available at the Transkribus platform.4 As displayed in Fig. 1, in the Transkribus user
interface PyLaia is placed into the Tab “Tools”, as an option of the “Test Recognition” selection-
list (the CITlab’s HTR tool is the other option). Actually, PyLaia has similar functionalities and
performance characteristics as the CITlab’s HTR approach, but the former is completely open source.

Figure 1: Screenshot of the Transkribus interface. The area highlighted in red shows the “text
recognition” options in the Tab “tools”.

It is worth mentioning that the work [1] reports a benchmark of different open-source Handwritten
Text Recognition systems (including PyLaia), which were tested on a dataset of handwritten histor-
ical documents in Norwegian. The recognition accuracy of PyLaia’s predictions are in the top three
reported.

1https://github.com/jpuigcerver/PyLaia
2https://pytorch.org
3https://github.com/jpuigcerver/Laia.git
4https://transkribus.eu/Transkribus/

2

https://github.com/jpuigcerver/PyLaia
https://pytorch.org
https://github.com/jpuigcerver/Laia.git
https://transkribus.eu/Transkribus/

2 Installing PyLaia
The source code of PyLaia is freely available at: https://github.com/jpuigcerver/PyLaia, the popular
GitHub5 hosting platform for software development version control using git.6

There are several ways to install this ToolKit. In the following section, three ways are briefly
described. For the first two, it is assumed that we are working on a Linux system (Ubuntu7 or any
other Debian-based distribution) running on a machine equipped with a Graphic Processing Unit
(GPU).

2.1 Installing PyLaia on Local System using Python Standard Library
For this case, it is required that python3 and pip packages to be already installed in the local system.
These are the steps to install PyLaia in the local system:

Install "python", "pip" and "git" in case they are not in the system
apt-get install -y python3 pip git

This version fixes an issue with the required package jsonargparse
pip install jsonargparse==4.13.0

Download PyLaia from the GitHub repository
git clone https://github.com/jpuigcerver/PyLaia

Install the PyLaia toolkit
cd PyLaia
pip install -r requirements.txt
python setup.py install

2.2 Installing PyLaia on Local System using Python Virtual Environment
This case requires that virtualenv package was previously installed. The installing steps are as fol-
lows:

Install "virtualenv" in case it has not aready done
apt-get install -y virtualenv

Download PyLaia from the GitHub repository
git clone https://github.com/jpuigcerver/PyLaia

Create a python virtual enviroment named "RDNN-HTR-PY"
virtualenv -p python3 RDNN-HTR-PY

Activate the virtual environment
source RDNN-HTR-PY/bin/activate

This version fixes an issue with the required package jsonargparse
pip install jsonargparse==4.13.0

5https://github.com
6https://git-scm.com
7https://ubuntu.com

3

https://github.com/jpuigcerver/PyLaia
https://github.com
https://git-scm.com
https://ubuntu.com

Install the PyLaia toolkit
cd PyLaia
python setup.py install

The advantage of this installing method is that everything is placed inside the directory “RDNN-
HTR-PY” and avoids conflicts with our host Linux distribution. To disable the virtual environment,
just run “deactivate” at the shell prompt.

2.3 Installing PyLaia on Anaconda Platform (recommendable option)
Anaconda platform is highly recommended for installing all the required software. Check out the
official website at https://anaconda.org for instructions about how to install the Miniconda package.
Basically, to install it:

wget \
https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh

Thereupon, the PyLaia ToolKit can be installed as follows:

Create a directory for placing stuff
mkdir CONDA-SRC

Clone the PyLaia repository on the local machine
git clone https://github.com/jpuigcerver/PyLaia CONDA-SRC/PyLaia

Create a new conda environment for PyLaia
conda create -n PyLaia python=3.7.11
conda activate PyLaia

This version fixes an issue with the required package jsonargparse
pip install jsonargparse==4.13.0

Installing PyLaia and remaining dependencies
pip install -e CONDA-SRC/PyLaia

To remove PyLaia environment from CONDA
conda deactivate
conda env remove -n PyLaia

2.4 Installing and Using PyLaia on Google Colab Platform
To use PyLaia on Google Colaboratory Platform (Colab for short), a compliant web browser (Fire-
fox, Chrome, MSEdge, etc.) is required to connect to “Google Drive” at: https://drive.google.com/
drive/my-drive There, it will be asked us to enter our Google login and password account. If the
“add-on” Colab is not already enable, we have to click on the button tagged with [+New] (top left),
and then click on [More] and select [Google Colaboratory] to install it.

To start the practice session in Colab, we first upload the provided file Prac_PyLaia.ipynb
(https://www.prhlt.upv.es/~ahector/BERN/NoteBook/Prac_PyLaia.ipynb) to Goggle Drive by click-
ing again on the button [New] and then on the [File upload]. Next, a pop-up window will appear
prompting to select a file to upload.

4

https://anaconda.org/
https://anaconda.org
https://docs.conda.io/en/latest/miniconda.html
https://drive.google.com/drive/my-drive
https://drive.google.com/drive/my-drive
https://www.prhlt.upv.es/~ahector/BERN/NoteBook/Prac_PyLaia.ipynb

Once the file Prac_PyLaia.ipynb has been uploaded, it will be displayed in My Drive. By
clicking on this filename, Colab is started and then the file Prac_PyLaia.ipynb is loaded. So,
now we have everything ready to start this practice in Colab.

3 Installing other required Tools
As will be seen later on, for extracting and processing line images from page images using the infor-
mation contained in corresponding PAGE XML files [2], we employ the open-source tool textfeats,
which can be downloaded at: https://github.com/mauvilsa/textfeats. For instructions about its require-
ments and how to install it, refer package documentation.

To display PyLaia’s predictions of line images along with their word segmentation, we will use
the python script visualize_segmentation.py, which can be downloaded at: https://www.
prhlt.upv.es/~ahector/BERN/Aux/visualize_segmentation.py.

Another (generic) tool that will be required for parsing XML files is xmlstarlet. This will be used
for processing the PAGE XML files included in the dataset described in the next section.

4 Experimental Dataset and Performance Measures
The handwritten text dataset employed for trying PyLaia and the performance measures for evaluat-
ing recognition results are presented below.

4.1 ICFHR’14 Bentham Dataset
This dataset was already used in the ICFHR 2014 Handwritten Text Recognition contest.8 This is a
subset of manuscripts taken from the Bentham Papers written by the English philosopher and reformer
Jeremy Bentham9 and some copies written by his secretarial staff. The manuscripts covers different
subjects as legal reform, punishment, the constitution, religion, and his panopticon prison scheme.
Fig. 2 shows some examples of the manuscript images included in this dataset.

Figure 2: Document samples of the ICFHR-2014 dataset.

The dataset is available for research purpose at ZENODO: https://zenodo.org/record/44519. The
GT is provided in PAGE XML format [2]. Table 1 summarizes the basic statistics of this dataset. Page

8http://transcriptorium.eu/~htrcontest
9http://blogs.ucl.ac.uk/transcribe-bentham/jeremy-bentham

5

https://github.com/mauvilsa/textfeats
https://www.prhlt.upv.es/~ahector/BERN/Aux/visualize_segmentation.py
https://www.prhlt.upv.es/~ahector/BERN/Aux/visualize_segmentation.py
https://zenodo.org/record/44519
http://transcriptorium.eu/~htrcontest
http://blogs.ucl.ac.uk/transcribe-bentham/jeremy-bentham

images and transcripts of training and validation partition sets are provided both at page level and at
line level, while page images of the test partition set are provided only at line level.

Table 1: Main statistics of the ICFHR-2014 dataset. The images were scanned at 300dpi.

Number of: Training Validation Test Total
Pages 350 50 33 433
Lines 9 198 1 415 860 11 473
Running words 86 075 12 962 7 868 106 905
Lexicon 8 658 2 709 1 946 9 716
Character set size 86 86 86 86
Running characters 442 336 67 400 40 938 550 674

For more details about this dataset (data organization, format of transcript and image files, HTR
baseline results, etc.), refer to [3, 4] and the documents within it.

4.2 Evaluation Measures for HTR
Once the recognition has finished, we can assess the accuracy of the recognized hypotheses through
the Character Error Rate (CER) and the Word Error Rate (WER) measures. WER/CER is defined
as the minimum number of words/characters that need to be substituted, deleted, or inserted to match
the recognition outputs with the corresponding reference ground truths, divided by the total number
of words/characters in the reference transcripts:

WER/CER =

(
D + S + I

N

)
· 100

where:

I : number of word/character insertions
D : number of word/character deletions
S : number of word/character substitutions
H : number of word/character correct labels
N : total number of word/character references in the defining transcription files.

Fig. 3 illustrates obtained CER/WER figures for two samples from the ICFHR-2014 benchmark.

I
WER = 4/7 = 57%
CER = 8/50 = 16%H such Penstentrary Hoases should be anid priapalty

R such Penitentiary Houses should be and principally

I
WER = 2/9 = 22%
CER = 8/52 =15%H for eomfromiy and employing in hard lebour , Persons

R for confining and employing in hard labour , Persons

Figure 3: Two examples of test line images (I), automatic (H) and reference (R) transcripts, along
with the corresponding WER and CER.

For computing WER/CER we will utilize the python package editdistance.

6

https://github.com/roy-ht/editdistance

5 Data Preparation

5.1 Line Extraction and Processing
This section describes the way to extract and process text line images (along with their transcripts)
from page images. Although, extracted & processed lines and their transcripts are already provided
at the ZENODO website.

From the already created WorkDir directory, containing the BenthamDatasetR0-GT.tbz
and BenthamDatasetR0-Images.tbz files downloaded from ZENODO at https://zenodo.org/
record/44519, the following shell-script commands are executed:� �

mkdir -p $HOME/WorkDir/DATA && cd $HOME/WorkDir/DATA
Decompress both "tbz" files into the DATA directory
tar xvjf ../BenthamDatasetR0-GT.tbz
tar xvjf ../BenthamDatasetR0-Images.tbz
Create a symbolic link of BenthamDatasetR0-GT/Partitions
ln -s BenthamDatasetR0-GT/Partitions
Put together page images and PAGE XML files within IMAGE dir
mkdir IMAGES; cd IMAGES
cp -s ../BenthamDatasetR0-Images/Images/Pages/*.jpg .
cp -s ../BenthamDatasetR0-GT/PAGE/*.xml .
cd ..
 	
As commented before, the textfeats tool [5] is employed to extract line from page images using

their location coordinates included in corresponding PAGE XML files, and apply then some handwrit-
ing style attribute correction/normalization on them. The setup configuration for this tool is shown
below (it is assigned to the shell variable textFeats_cfg):

textFeats_cfg='
TextFeatExtractor: {

verbose = false; // Whether to be verbose
deslope = true; // Whether to do automatic desloping of the text
deslant = true; // Whether to do automatic deslanting of the text
type = "raw"; // Type of feature to extract, either "dotm" or "raw"
format = "img"; // Output features format, either "htk", "ascii" or "img"
stretch = true; // Whether to do contrast stretching
enh = true; //
enh_win = 30; // Window size in pixels for local enhancement
enh_prm = 0.2; // Sauvola enhancement parameter
//enh_prm = [0.05, 0.2, 0.5]; // 3 independent enhancements, each in a color channel
normheight = 0; // Normalize image heights
normxheight = 0; //
momentnorm = true; // Global line vertical moment normalization
fpgram = false; // Whether to compute the features parallelograms
fcontour = true; // Whether to compute the features surrounding polygon
fcontour_dilate = 0; //
padding = 10; // Padding in pixels to add to the left and right

}';

The script below extracts and processes line images for each XML PAGE file (and corresponding
page image in JPG format) using the configuration stored in the shell variable textFeats_cfg.
The processed lines are then placed into the (previously created) Lines directory:

� �
mkdir Lines
for i in IMAGES/*.xml; do

N=`basename $i .xml`
textFeats --cfg <(echo "$textFeats_cfg") --outdir Lines $i

done
 	
We assume that the textFeats binary location has been added to the system path.

7

https://zenodo.org/record/44519
https://zenodo.org/record/44519

The following shell script extracts line transcripts along with their line IDs and puts them into the
Transcripts.txt file.� �
for f in IMAGES/*.xml; do

xmlstarlet sel -t -m '//_:TextLine' -v ../../@imageFilename \
-o '.' -v @id -o " " -v _:TextEquiv/_:Unicode -n $f

done | sed -r "s/\.jpg//" > Transcripts.txt
 	
The format of produced Transcripts.txt file is as follows:

Format
Line-ID <word1> <word2> <word3> ...
...
035_322_001.r186 S. 2
035_323_001.r5 182
035_323_001.r205 3
035_323_001.r6 Constitutional Code
071_010_002.r47 (B) (C)
...

To generate the lists of required line IDs: TrainLines.lst, ValidationLines.lst and
TestLines.lst from the corresponding lists of page IDs: Train.lst, Validation.lst
and Test.lst:� �

grep -f Partitions/Train.lst Transcripts.txt |
cut -d " " -f1 | sort -u > TrainLines.lst

grep -f Partitions/Validation.lst Transcripts.txt |
cut -d " " -f1 | sort -u > ValidationLines.lst

grep -f Partitions/Test.lst Transcripts.txt |
cut -d " " -f1 | sort -u > TestLines.lst

mv TrainLines.lst ValidationLines.lst TestLines.lst Partitions/
 	
5.2 Preparing Data for using with PyLaia
We assume here that the directory WorkDir exists and contains the sub-directories Lines (with the
processed line image files) and Partitions (with the files of lists with training & validation line
IDs) and the file Transcripts.txt. First, we proceed to create some symbolic links inside the
working directory WorkDir:� �
cd $HOME/WorkDir
ln -s ./DATA/Transcripts.txt
ln -s ./DATA/Lines
ln -s ./DATA/Partitions
 	

From the files with the lists of training and validation line IDs: Partitions/TrainLines.lst
and Partitions/ValidationLines.lst, and the file containing the (word level) transcripts
Transcripts.txt, we generate corresponding character level transcription files train_gt.txt
and valid_gt.txt. To carry out this task, we have the following the shell script:

8

� �
Creating train_gt.txt file
gawk 'BEGIN{

while (getline < "Partitions/TrainLines.lst" > 0) T[$1]=""
}{ if (($1 in T)) { print $0} }' Transcripts.txt |

gawk '{ key=$1; $1=""; L=length($0); printf key;
for (l=1;l<=L;l++) {
c=substr($0,l,1);
if (c==" ") printf " <space>"; else printf " "c;

} if (L==0) print " <space> <space>"; else print " <space>"
}' > train_gt.txt

Creating valid_gt.txt file
gawk 'BEGIN{

while (getline<"Partitions/ValidationLines.lst">0) T[$1]=""
}{ if (($1 in T)) { print $0} }' Transcripts.txt |

gawk '{ key=$1; $1=""; L=length($0); printf key;
for (l=1;l<=L;l++) {
c=substr($0,l,1);
if (c==" ") printf " <space>"; else printf " "c;

} if (L==0) print " <space> <space>"; else print " <space>"
}' > valid_gt.txt
 	

An this is the Python script version of the previous shell script (also used in the Colab platform):� �
Creating train_gt.txt file
with open("Transcripts.txt") as f, \

open("Partitions/TrainLines.lst") as g:
trLst=set((x.strip()) for x in g)
trLbs=dict(\

(x.split(' ',1)[0].strip(), \
re.sub(r'\s+', ' ',x.split(' ',1)[1].strip())) \

for x in f if x.split(' ',1)[0].strip() in trLst)
trLbs={k:' '.join([c if c!=' ' else '<space>' for c in v]) \

for k,v in trLbs.items() }
with open("train_gt.txt",'w') as f:
for k,v in trLbs.items(): f.write(k+' <space> '+v+' <space>\n')

Creating valid_gt.txt file
with open("Transcripts.txt") as f, \

open("Partitions/ValidationLines.lst") as g:
trLst=set((x.strip()) for x in g)
trLbs=dict(\

(x.split(' ',1)[0].strip(), \
re.sub(r'\s+', ' ',x.split(' ',1)[1].strip())) \

for x in f if x.split(' ',1)[0].strip() in trLst)
trLbs={k:' '.join([c if c!=' ' else '<space>' for c in v]) \

for k,v in trLbs.items()}
with open("valid_gt.txt",'w') as f:
for k,v in trLbs.items(): f.write(k+' <space> '+v+' <space>\n')
 	

9

The produced file (for example valid_gt.txt) looks like:

Format
Line-ID <char1> <char2> <char3> ...
...
035_322_001.r186 <space> S . <space> 2 <space>
035_323_001.r5 <space> 1 8 2 <space>
035_323_001.r205 <space> 3 <space>
035_323_001.r6 <space> C o n s t i t u t i o n a l <space> C o d e <space>
071_010_002.r47 <space> (B) <space> (C) <space>
...

To obtain the file symbols.txt with the list of symbols to be trained:� �
Creating symbols.txt file
gawk '{for (i=2;i<=NF;i++) L[$i]=""}

END{for (l in L) print l}' train_gt.txt valid_gt.txt |
sort |
gawk 'BEGIN{print "<ctc>\t0"}{print $1"\t"NR}' > symbols.txt
 	
... and the Python script version:� �
Creating symbols.txt file
with open("train_gt.txt") as f, open("valid_gt.txt") as g:
s1=set(y for x in f for y in x.strip().split()[1:])
s2=set(y for x in g for y in x.strip().split()[1:])

with open("symbols.txt",'w') as f:
f.write('<ctc> 0\n')
for i,x in enumerate(sorted(set.union(s1,s2))):

f.write(x+' '+str(i+1)+'\n')
 	
The content of the obtained file symbols.txt looks like:

Format
Symbol ID
<ctc> 0
! 1
" 2
3
& 4
...
0 14
1 15
2 16
3 17
...
<space> 27
...
A 31
B 32
C 33
D 34
...

10

WARNING: Note that “<ctc> 0” must be the first line of the list (excluding the comment lines).
This is the special CTC symbol, whose ID is 0.

6 CRNN Training Phase
The CRNN topology and meta-parameters (number of convolutions and recurrent neural network
layers, activation function types, drop-out parameter values, kernel size and stride steps, etc.) adopted
for this practice session are shown in Fig. 4.

AAP

CB1

CB2 CB3
CB4

CNT
RNN1

CNT
RNN2

CNT
RNN3

CNT LISM

Reference Parameters:

AAP: Adaptive Average Pooling, Output-Size:16

CB1: Cnn-Knl/Strd:3×3/1×1, Feat-Mps:12, B-Nrm:Yes, Act-F:L-Relu, MxPool:2×2, DrpO:0

CB2: Cnn-Knl/Strd:3×3/1×1, Feat-Mps:24, B-Nrm:Yes, Act-F:L-Relu, MxPool:2×2, DrpO:0

CB3: Cnn-Knl/Strd:3×3/1×1, Feat-Mps:48, B-Nrm:Yes, Act-F:L-Relu, MxPool:0×0, DrpO:0

CB4: Cnn-Knl/Strd:3×3/1×1, Feat-Mps:48, B-Nrm:Yes, Act-F:L-Relu, MxPool:2×2, DrpO:0

RNN1: Rnn-type:BLSTM, Units:256+256, DrpO:0.5

RNN2: Rnn-type:BLSTM, Units:256+256, DrpO:0.5

RNN3: Rnn-type:BLSTM, Units:256+256, DrpO:0.5

LISM: Linear+Sofmax layer, DrpO:0.5

CNT: Concat layer, after the CB4, concatenates all Feat-Mps from all pixels of an individual column
into a single vector.

Figure 4: The adopted CRNN topology consists of 4 Convolutional Blocks (CB), followed by 3 Recur-
rent Neural Network layers (RNN) and a full connected Linear+Softmax layer (LISM). References:
Kernel/Stride (Knl/Str), Feature Maps (Feat_Mps), Batch Normalization (B-Nrm), Activation Func-
tion (Act-F), Max-Pooling (MxPool), Drop-Out (DrpO).

11

6.1 Creating a CRNN Model
Before starting the training process, PyLaia requires a file containing the specifications of the CRNN
topology to be trained. To this end, we create a model directory where the file containing such
topology specifications (also named model) and also the files with the proper trained parameters
(weights of the network) will be stored. Then, we proceed to generate the model/model file,
defining the topology according to Fig. 4, by running pylaia-htr-create-model command with the
adequate options as follows:� �
Generate a topology model/model
mkdir model
pylaia-htr-create-model \
--logging.overwrite True \
--logging.level INFO \
--logging.to_stderr_level INFO \
--logging.filepath train-crnn.log \
--common.train_path ./model/ \
--common.model_filename model \
--fixed_input_height 0 \
--adaptive_pooling avgpool-16 \
--crnn.cnn_kernel_size [3,3,3,3] \
--crnn.cnn_stride [1,1,1,1] \
--crnn.cnn_dilation [1,1,1,1] \
--crnn.cnn_num_features [12,24,48,48] \
--crnn.cnn_batchnorm [True,True,True,True] \
--crnn.cnn_activation [LeakyReLU,LeakyReLU,LeakyReLU,LeakyReLU] \
--crnn.cnn_dropout [0,0,0,0] \
--crnn.cnn_poolsize [2,2,0,2] \
--crnn.use_masks True \
--crnn.rnn_type LSTM \
--crnn.rnn_layers 3 \
--crnn.rnn_units 256 \
--crnn.rnn_dropout 0.5 \
--crnn.lin_dropout 0.5 \
symbols.txt
 	

The main settings of this command are:

• directory path where to store the file with topology definition and files with trained parameters.

• name of the file with topology definition.

• adaptive average pooling to input line images independently of their height.

• convolutional block hyper-parameters: number of convolutional layers, number of feature maps,
whether or not to apply batch normalization, type of activation function, kernel size and stride,
drop-out value, max-pooling kernel size per layer.

• recurrent NN block: number of RNN layers, type of RNN, number of RNN units per layer,
drop-out value.

• file containing the list of symbols to be trained.

12

6.2 Training CRNN
To launch of the training process itself, we resort to the PyLaia command: pylaia-htr-train-ctc. This
is in charge to train the CRNN model applying a gradient descend technique called Back-Propagation
Through Time (BPTT).

� �
Train the CRNN model
pylaia-htr-train-ctc \
--logging.overwrite False \
--logging.level INFO \
--logging.to_stderr_level INFO \
--logging.filepath train-crnn.log \
--common.train_path ./model \
--common.model_filename model \
--data.batch_size 32 \
--data.color_mode L \
--optimizer.name Adam \
--optimizer.learning_rate 0.0003 \
--train.augment_training True \
--train.delimiters ["<space>"] \
--train.early_stopping_patience 20 \
--trainer.gpus 1 \
--trainer.auto_select_gpus True \
symbols.txt ["Lines/"] train_gt.txt valid_gt.txt
 	

The main settings of this command are:

• learning rate value.

• mini batch size and number of image channels to consider.

• whether or not to apply data augmentation.

• directory containing the line images and files with the list of IDs of training and validation
samples respectively.

• list of symbols/chars to train.

• maximum number of consecutive epochs without a new lowest validation CER.

To check the usage of the NVIDIA® GPU with this task, employ the command nvidia-smi (it is
assumed that package ndivia-smi has been installed in the local system).

WARNING: This training process takes a long time (around 8 hours depending of the GPU). To skip
this step, download the model already trained from:

Download the file into the $HOME/WorkDir directory
[-d $HOME/WorkDir/model] && rm -rf $HOME/WorkDir/model
wget --no-check-certificate \

https://www.prhlt.upv.es/~ahector/BERN/Aux/model-CRNN_bentham.tgz
Decompress it into the $HOME/WorkDir directory
tar xzf model-CRNN_bentham.tgz -C $HOME/WorkDir/

13

7 Decoding and Evaluation
Once the training process of a CRNN model has finished, this is ready to be used in the HTR decod-
ing process of new given line images. This decoding process is actually carried out by the PyLaia
command pylaia-htr-decode-ctc with adequate options as shown below:� �
Decoding de validation partition
pylaia-htr-decode-ctc \
--logging.level NOTSET \
--logging.to_stderr_level INFO \
--common.train_path ./model \
--data.batch_size 32 \
--data.color_mode L \
--decode.include_img_ids True \
--decode.separator " " \
--decode.use_symbols True \
--trainer.gpus 1 \
--trainer.auto_select_gpus True \
--img_dirs ["Lines/"] \
symbols.txt Partitions/TestLines.lst > hypotheses.txt
 	

The main settings of this command are:

• path of the directory containing trained model parameters.

• mini batch size and number of image channels.

• path of the directory containing line images to decode.

• list of trained symbols/characters.

• file with the list of IDs of test samples to decode.

To check/see the first 10 lines of the produced hypotheses.txt file:

head hypotheses.txt

Format
Line-ID <char1> <char2> <char3> ...
071_022_003.r221 <space> : e d <space> Y o u r s e l f . <space>
071_030_001.r41 <space> M u t i l a t i o n . <space>
071_030_001.r110 <space> E x p o s i t i o n <space>
071_022_003.r59 <space> t h e <space> t i m e . <space>
071_022_003.r248 <space> 2 3 <space>
071_030_001.l38 <space> I I I <space>
071_030_001.l40 <space> (C) <space>
071_030_001.l31 <space> I I <space>
071_163_004.r117 <space> a r e <space> i n t r o d u c t o r y . <space>
071_030_001.r75 <space> M a i n - <space> T e a t . <space>
...

7.1 Evaluation of the CRNN Decoding Output
For evaluating decoding outputs, the reference ground-truth file test_gt.txt is required, which
has to be generated from files Partitions/testLines.lst and Transcripts.txt in the
same way as it was done for generating train_gt.txt and valid_gt.txt.

14

To evaluate the quality of the HTR decoding output in the file hypotheses.out, the figures
Character Error Rate (CER) and Word Error Rate (WER) are computed. The following shell script
carry out that through the command compute-wer, which belongs to the Kaldi Toolkit:10� �
Compute CER without initial and final "<space>" symbols
compute-wer --mode=strict \

ark:<(gawk '{$2="";$NF=""; print}' test_gt.txt) \
ark:<(gawk '{$2="";$NF=""; print}' hypotheses.txt) |

grep WER | sed -r 's|%WER|%CER|g'

Compute WER
compute-wer --mode=strict \

ark:<(gawk '{ printf $1; \
for (i=2;i<=NF;i++)

if ($i=="<space>") printf " "; else printf $i;
print ""

}' test_gt.txt) \
ark:<(gawk '{ printf $1; \

for (i=2;i<=NF;i++)
if ($i=="<space>") printf " "; else printf $i;
print ""

}' hypotheses.txt) |
grep WER
 	
This is the Python script version for computing CER and WER:� �
Require "editdistance" package
pip install editdistance
import editdistance
with open("test_gt.txt") as f, open("hypotheses.txt") as g:
ref=dict(\

(l.split(' ',1)[0], l.split(' ',1)[1].split()[1:-1]) for l in f)
hyp=dict(\

(l.split(' ',1)[0], l.split(' ',1)[1].split()[1:-1]) for l in g)

Compute CER without initial and final "<space>" symbols
rc=[ref[k] for k in ref.keys()]
hc=[hyp[k] if k in hyp else '' for k in ref.keys()]
numedit = sum([editdistance.eval(x,y) for x,y in zip(rc,hc)])
numWords = sum([len(ref[k]) for k in ref.keys()])
print("CER(%%) = %6.2f [%d / %d]" % \

(numedit/numWords*100,numedit,numWords))

Compute WER
rw1=[''.join(x).replace('<space>',' ').strip().split() for x in rc]
hw1=[''.join(x).replace('<space>',' ').strip().split() for x in hc]
numedit = sum([editdistance.eval(x,y) for x,y in zip(rw1,hw1)])
numWords = sum([len(k) for k in rw1])
print("WER(%%) = %6.2f [%d / %d]" % \

(numedit/numWords*100,numedit,numWords))
 	
10http://kaldi-asr.org

15

http://kaldi-asr.org

8 Decoding Setup to get also Information about Word Locations
Basically, to get also the segmentation information at word (or character) level in the decoding pro-
cess, we use the option: -decode.segmentation as shown below:� �
Decoding de validation partition
pylaia-htr-decode-ctc \
--logging.level NOTSET \
--logging.to_stderr_level INFO \
--common.train_path ./model \
--data.batch_size 32 \
--data.color_mode L \
--decode.include_img_ids True \
--decode.separator " " \
--decode.use_symbols True \
--decode.segmentation word \
--trainer.gpus 1 \
--trainer.auto_select_gpus True \
--img_dirs ["Lines/"] \
symbols.txt Partitions/TestLines.lst > wordSeg_info.txt
 	
To have fancy visualization of predicted transcripts along with their segmented words on corre-

sponding line images, we make use of the Python script visualize_segmentation.py:� �
Download Python script "visualize_segmentation.py" for displaying lines
with predicted word segmentation
wget --no-check-certificate https://www.prhlt.upv.es/~ahector/AERFAI/
PyLaia/Aux/visualize_segmentation.py
 	
Run the Python script on the first 10 predicted lines� �
Remove "OutSeg" directory in case it already exists
rm -rf OutSeg
Run the script on the first 10 predicted lines and save created images
on "OutSeg" directory
./visualize_segmentation.py Lines OutSeg <(head -10 wordSeg_info.txt)
 	
Fig. 5 shows some line images with their predicted texts and marked word segmentations.

9 Proposed Exercise
By using only the 30% of the available training samples, train and evaluate the decoding output of a
new CRNN whose topology is defined in Fig. 6.

References
[1] Martin Maarand, Yngvil Beyer, Andre Kåsen, Knut T. Fosseide, and Christopher Kermorvant.

A comprehensive comparison of open-source libraries for handwritten text recognition in norwe-
gian. In Seiichi Uchida, Elisa Barney, and Véronique Eglin, editors, Document Analysis Systems,
pages 399–413, Cham, 2022. Springer International Publishing.

16

Figure 5: Examples of predicted texts along with their word segmentations displayed on correspond-
ing line images.

[2] S. Pletschacher and A. Antonacopoulos. The PAGE (Page Analysis and Ground-truth Elements)
format framework. In International Conference on Pattern Recognition, pages 257–260, 2010.

[3] J. A. Sánchez, V. Romero, A. H. Toselli, and E. Vidal. ICFHR2014 competition on handwritten
text recognition on tranScriptorium datasets (HTRtS). In International Conference on Frontiers
in Handwriting Recognition, pages 181–186, 2014.

[4] Joan Andreu Sánchez, Verónica Romero, Alejandro H. Toselli, Mauricio Villegas, and Enrique
Vidal. A set of benchmarks for handwritten text recognition on historical documents. Pattern
Recognition, 94:122 – 134, 2019.

[5] M. Villegas, V. Romero, and J. A. Sánchez. On the modification of binarization algorithms to
retain grayscale information for handwritten text recognition. In R. Paredes, J.S. Cardoso, and
X.M. Pardo, editors, Pattern Recognition and Image Analysis: 7th Iberian Conference, IbPRIA
2015, Santiago de Compostela, Spain, June 17-19, 2015, Proceedings, pages 208–215, 2015.

17

AAP

CB1

CB2
CB3

CNT
RNN1

CNT
RNN2

CNT LISM

Reference Parameters:

AAP: Adaptive Average Pooling, Output-Size:16

CB1: Cnn-Knl/Strd:3×3/1×1, Feat-Mps:12, B-Nrm:Yes, Act-F:L-Relu, MxPool:2×2, DrpO:0

CB2: Cnn-Knl/Strd:3×3/1×1, Feat-Mps:24, B-Nrm:Yes, Act-F:L-Relu, MxPool:2×2, DrpO:0

CB3: Cnn-Knl/Strd:3×3/1×1, Feat-Mps:48, B-Nrm:Yes, Act-F:L-Relu, MxPool:2×2, DrpO:0.5

RNN1: Rnn-type:BLSTM, Units:128+128, DrpO:0.5

RNN2: Rnn-type:BLSTM, Units:128+128, DrpO:0.5

LISM: Linear+Sofmax layer, DrpO:0.5

CNT: Concat layer, after the CB3, concatenates all Feat-Mps from all pixels of an individual column
into a single vector.

Figure 6: The adopted CRNN topology consists of 3 Convolutional Blocks (CB), followed by 2 Recur-
rent Neural Network layers (RNN) and a full connected Linear+Softmax layer (LISM). References:
Kernel/Stride (Knl/Str), Feature Maps (Feat_Mps), Batch Normalization (B-Nrm), Activation Func-
tion (Act-F), Max-Pooling (MxPool), Drop-Out (DrpO).

18

	Introduction: PyLaia Toolkit
	Installing PyLaia
	Installing PyLaia on Local System using Python Standard Library
	Installing PyLaia on Local System using Python Virtual Environment
	Installing PyLaia on Anaconda Platform (recommendable option)
	Installing and Using PyLaia on Google Colab Platform

	Installing other required Tools
	Experimental Dataset and Performance Measures
	ICFHR'14 Bentham Dataset
	Evaluation Measures for HTR

	Data Preparation
	Line Extraction and Processing
	Preparing Data for using with PyLaia

	CRNN Training Phase
	Creating a CRNN Model
	Training CRNN

	Decoding and Evaluation
	Evaluation of the CRNN Decoding Output

	Decoding Setup to get also Information about Word Locations
	Proposed Exercise

